AD=A115 033 MASSACHUSETTS INST OF TECH CAMBRIDGE ARTIFICIAL INTE==ETC F/$ 6/16
M‘"'LIV!L RECONSTRUCTION OF VISUAL SURFACESS VARIATIONAL PIIHYC(U)
ll D TERZOPOULOS NDOO!Q-!O-C-OS
UNCLASSIFIED




1 28 2s
=i
"m T =
==Y e
I fis nie
—— .

i

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A




ADA115033

UNCLASSIFIED . -

SECURITY CLASSIFICATION OF THIS PAGE (When Dats Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS

BEFORE COMPLETING FORM

1. REPORY NUNBER

2. GOVYT ACCESSION NOL 3. R

AIM 671 A D=4 9 M)
K s

™

CIFLENT’S CATALOG NUMBER

4

S

4. TITLE (and Subtitle) M

- N

YPE OF REPORT A PERIOD COVERED

Multi-Level Reconstruction of Visual

s e e st Memorandum
Surfaces: Variational Principles and

1t ] N §. PERFORMING ORG. REFORT NUMBER
Finite Element Representations )

7. AUTHOR(s)

- S . . | - CONTRACT OR GRANT NUNBER{e)- -~ — "

. : . A P Y o PN 5..
Demetri Terzopoulos. NG0014-80-C-0305 "

PERFORMING ORGANIZATION NAME AND ADORESS B 10.
Artificial Intelligence Laboratory
545 -Technology Square

Cambridge, Massachusetts 02139

PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

“f11. CONTROLLING OFFICE NAKME AND ADORESS ° ’ 12. REPORT DATE

Advanced Research Projects Agency - ' April, 1982
14500 Wilsom Bivd . @ - R ~

; . 13. RUMBER OF PAGES
Arlington, Virainia 22209

Pages, 91 :

14, MOMITORING AGENCY NAME & ADDRESS(L! different {rom Controlling Ollice) 18, SECURITY CLASS. (of tAts seporty
Office of Naval Research - L . UNCLASSIFIED
Information Systems ° . ST T ‘ T
Arl ington, vﬁ—ginia 22217 A . ' 5a, o:cg.ussnncxnon_/Dovmcanomcl

SCHEDULE .

16. DISTRIBUTION STATEMENT (of thlis Report)

Distribution of this dqcument is unlimited.

T

DISTRIBUTION STATEMENT {_ol the abetract entersd in Block 20, i ditierent from Report)

’

PP, o5

SUPPLEMENTARY NCTES

‘None o P o . SR . .
19. KEY WORDS (Continue oo reverse alde If noc.o.cau-r and Identily by block mumber) e o A" i

Computer Vision . - Sn;fage‘RechStructioh B

_Hierarchical Representations Finite Elements AETPA

~Variational Principles  Multi-level Relaxation. L

Stereo. . .« . - Interploation = -

20.

- provide such-information at a number of levels spanning a range' of

ABSTRACT (Contimse en reverae alde if necessary and identity by dock number)

Computational modules early in the-human»v1sion'$Yspém typically
generate -sparse information about the shpaes of vis;ble,sgrfaces
in the scene. Moreoveéer, visual processes such as stereopsis.can

resolutions. In this paper, we extend thi€ multi-level structure
to encompass the subsequent task of reconstruéting full surface

"descreptions from the sparse information. The mathemgtical develop

over

n

) X ‘iLi?Jii-'




RV

RN

proceeds in three steps. First, the surfacemost consistent with the
sparse contraints is characterized as the solution to an optimal
approximation problem which is posed as a variational principle
describing the constrained equilibrium state of a thin flexible plate
Second, local, finite element representations of surfaces are
introduced and, by applying the finite element method, the continuous
variational principle is transformed into a discrete problem in the
form of large system of linear algebraic equations whose solution
is computable by local-support, cooperative mechanisms. Third, to
exploit the information available at each level of resolution, a
hierarchy of discrete problems is formulated and a highly efficient
multi-level algorithm, involving both intra-level relaxation
processes and bi-directional inter-level local interpolation processe
is applied to their simultaneous solution. Examples of the genera-
tion of hierarchies of surface representations from stereo contraints
are given. Finally, the basic surface approximation problem is

revisited in a broader mathematical context whose implications are
of relevance to vision.

Accﬁ'ion FO?

ung 'r;; Rag 5
I . s )
DT Q\mCQd 0
Justfitcéf1°“~““'

riﬁuhah/‘ —




MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

a A.LL. Memo No. 671 April, 1982

MULTI-LEVEL RECONSTRUCTION OF VISUAL SURFACES:

Variational Principles and
. Finite Element Representations

Demetri Tersopoulos

‘ T oa
\ o Y

~ \ Abstract
Computational modules early in the human vision system typically generatc sparse information
about the shapes of visible surfaces in the scene. Moreover, visual processes such as stereopsis can
provide such information at a number of levels spanning a range of resolutions. In this paper, we—<_
extend-this multi-level structure,to encompass the subsequent task of reconstructing full surface
descriptions from the sparse information,.The mathematical development proceeds in three steps.
First, the surface most consistent with the sparse constraints is characterized as the solution to an
optimal approximation problem which is posed as a variational principle describing the constrained
equilibriumn state of a thin flexible plate. Second, local, finite element representations of surfaces
are introduced and, by applying the finite tlement method, the continuous variational principle
: is transformed into a discrete problem in the form of a large systein of linear algebraic equations
! whose solution is computable by local-support, cooperative mechanisms. Third, to exploit the
information available at each level of resolution, a hierarchy of discrete problems is formulated
and a highly eflicient multi-level algorithm, involving both intra-level relaxation processes and
! bi-directional inter-level local interpolation processes is applied to their simultaneous solution.
. *l Examples of the generation of hierarchies of surface representations from stereo constraints are
{
]

given. Finally, the basic surface approximation problem is revisited in a broader mathematical
context whose implications are of relevance to vision.
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1. INTRODUCTION

A fundamental problem in early vision is that of inferring the thrce-dimensional geometry
of visible surfaces in a scene from the intensity information available in the retinal images.
It scems that advanced biological vision systems subdivide this surprisingly difficult problem,
distributing its solution over a number of subsystems or modules which contribute to the recovery
of information about surface shape. Each module specializes in the interpretation of specific classes
of image cues and, to a first approximation, it performs its task independently of the other
subsystems. Examples of primary modules which have been identified include those responsible

for sterco vision and the perception of motion.

The computational framework set forth by Marr [Marr, 1976, 1982; Marr and Poggio, 1977]

has had a strong influence in the understanding of early vision. In particular, it has provided a
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paradigm which dictates that the modules initially be characterized in terms of the visual tasks
which they must perform and, subsequently, that they be studied in terms of the computational
processes through which they perform these tasks. The various computational processes in early
vision transform symbolic representations of images into symbolic representations of surfaces i
over several stages of analysis. An understanding of some of the details of these processes and '
representations has evolved recently, especially at the stages closer to the image, where much

of the work has been inspired by recent advances in neuroscience ([Marr, 1976}, [Marr and

Hildreth, 1980], {Marr and Poggio, 1979], [Ullman 1979a], etc.). On the other hand, our insights ,
at stages closer to e.plicit surface and volumetric representations are meager. For example, i
these fundamental questions remain open: first, how is the information generated by the various
modules, amalgamated into representations of surfaces (aee, e.g., [Nishihara, 1981}) and, second,
how do such representations give rise in turn to rcpresentations of the three-dimensional properties
of objects in the scene (see, e.g., [Brooks, 1981], [Marr and Nishihara, 1978], and [Nevatia and
Binford, 1977]).

The work described in this paper is part of ongoing research into the problem of obtaining

surface representations which will be of use to later processing stages in vision. In the context of

"'] Marr’'s framework, our goal is to analysze the process through which the sparse information retrieved

‘_.’.‘i;"
I

by, say, stereopsis or analysis of motion is combined and transformed into full, retinocentric

descriptions of surface shape consistent with our perception when we look around us. In particular,

we will argue that multiple, full surface representations spanning a range of resolutions are dessrable
and, indeed, show that they may be generated as an integral part of a highly-efficient, multi-level |
surface reconstruction algorsthm. Moreover, our approach seems sufficiently general to allow several ;
classes of surface shape information (such as local depth or orientation) provided by a number of

vision modules to be merged in & meaningful way.
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TERZOPOULOS MULTI-LEVEL SURFACE RECONSTRUCTION

1.1. Motivation of the Multi-Level Approach

To clarify our intentions, we will first examine Marr’s framework for early vision in some
detail. The framework is characterized by at least three major processing stages, each of which
transforms one retinocentric representition into another with the purpose of inferring, and makiog
explicit, relevant information about the surfaces in a scene. The first stage transforms the intensity
representations {or retinal images) into a primary representation, called the primal sketch {Marr,
1976). Changes in the physical properties of surfaces almost always give rise to intensity changes
in the images, and it is at the level of the primal sketch that the locations of these changes are
made explicit. In the second processing stage, specialized processes, such as those concerned with
stereo and shape from motion, infer information about the shape of surfaces from the contents of
the primal sketch. Since inferences can typically be made only at those locations which have been
marked in the primal sketch, the infcrmation generated is sparse, and it is collected into sparse
representations of surface shape that are referred to as the raw 24-D sketch. The final stage is
one of full surface reconstruction in which the sparse representations are transformed into a full

2}-D sketch containing explicit information about surface shape at all points in the scene.

The goal of the first processing stage is the detection of intensity changes in the image.
Recently, Marr and Hildreth [Marr and Hildreth, 1980; Hildreth, 1980] proposed a theory of edge
detection which was inspired by existing ncurophysiological evidence and certain mathematical
issues. An important aspect of thia theory is that intensity changes in the images must be
isolated at different scales of resolution. Indeed, there is evidence that the human visual system
detects intensity changes over a range of resolutions through the use of up to five independent,
spatial-frequency-tuned, bandpass channels [Campbell and Robson, 1968; Wilson and Giese, 1977;
Wilson and Bergen, 1979; Marr, Poggio, and Hildreth, 1980]. The existence of these independent
primal sketch representations is a crucial factor which contributes to the success of some later
computations such as stereopsis, as modeled by the Marr-Poggio theory of stereo vision [Marr and
Poggio, 1979] (see also [Mayhew and Frisby, 1980, 1981]). According to this model, the bandpass
pature of the channels leads to an almost trivial solution to the stereo correspondence problem
within the disparity range of each channel. Detailed depth information over a wide disparity range
is obtained through a process by which the coarser channels control vergence eye movements
that bring the finer channels into alignment (general studies of vergence eye movements include
[Riggs and Niehl, 1960] and [Rashbass and Westheimer, 1961]). On the other hand, computations
such as motion correspondence [Ullman, 1979a], whose function may not depend critically on
the exisience of multiple representations, may nevertheless be operative at each of the levels. It
seems likely in any case that multiple sparse representations of surface shape that span a range

of resolutions are generated by most of these modules.

In the context of stereopsis, Grimson [1981a, 1982a] pioneered the mathematical theory

of the subsequent visual surface recomstruction process which transforms the sparse surface
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Figure 1. The stereo module with single-level surface reconstruction.
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descriptions into full ones. He proposed that, before reconstruction begins, the multiple, sparse
depth representations output through the different bandpass channels be combined into a single
raw 24-D sketch in a way which maintains consistency across all scales. The raw 24-D sketch then
contains sparse depth information at the finest resolution possible. Next, a single reconstruction
process operating at this finest level generates a unique full 24-D sketch representing depth
information at high resolution. The steps are illustrated’in Figure 1, in which only three bandpass

channels are shown for simplicity.
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TERZOPOULOS MULTI-LEVEL SURFACE RECONSTRUCTION

A single full surface representation at the finest resolution possible certainly captures all

of the information provided by the stereo module and it should, in principle, be sufficient input

3 to later tasks. Unfortunately, a number of technical problems arise with this simple approach.
First, in collapsing the multiple depth representations into one raw 23-D sketch, information
potentially useful in later processing stages which are concerned with objcct-centered surface
descriptions, 3-D models of objects, and object recognition has been discarded prematurely. It
now secems likely that in order for some of these later stages to succeed and work efficiently,
surface representations at multiple scales will be necessary, just as they are nccessary at earlier
stages such as stereopsis. In accordance with Marr’s principle of least commitment [Marr, 1976), it
would be wasteful to discard information, prior to surface reconstruction, which may have to be
regenerated later. A second, and more immediately serious problem is a consequence of the great
bulk of incoming information within the large raw 24-D sketch which must be processed at the
finest resolution. Biologically feasible surface reconstruction algorithms such as those developed
by Grimson are extremely inefficient at generating full surface descriptions when faced with such

large representations. Roughly speaking, the primary reason for this incfficiency is due to the

local nature of the algorithms in question.

The above problems may be avoided if the sparse representations are not collapsed into
a single fine representation. Instead, multiple full surface representations spanning a range of
resolutions cught to be generated by the reconstruction process itself and made available to
processing stages beyond. The multi-level surface reconstruction algorithm which we will develop

in this paper accomplishes precisely this. Because the algorithm exploits information available at

coarser resolutions, its speed efficiency is dramatically superior to that of single level reconstruction
schemes. Order-of-magnitude inprovements are typically observed for surfaces reconstructed from
information provided by stereopsis. On the other hand, the expense in space in maintaining all
the coarser representations is very worthwhile since it turns out to be only a fraction of that

- |
b required to maintain the finest one.

i Figure 2 illustrates the multi-level surface reconstruction scheme and its incorporation into

; stereopsis. A fundamental point to realize about the multi-level approach in general is that
'4 information about surface depth, or for that matter surface orientation, is provided in each of

; the chaanels (i.e., sparse representations) by the various vision modules and, as will be shown,

! contributes in an optimal way to the generation of the hierarchy of full surface representations.
The muiti-level scheme involves both intra-level processes which propagate information across a
single rcpresentation, as well as snter-level processes which communicate between representations.
The inter-level processes are further classified into those which transfer information from coarser
levels to finer ones, and those which transfer information from finer levels to coarser ones. At
this point, we emphasize that multiple representations of consistent accuracy can be achieved
only if such a bi-directional flow of information is allowed to take place between the levels. This
statement will be substantiated rigorously in a later section.
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Figure 2. Multi-level approach to surface reconstruction.
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If the processes and representations envisioned are to be considered as models of the
human visual system, their form is constrained from below by what can be implemented in
neuronal hardware. Although our incomplete knowledge renders premature the formulation of
precise arguments along these lines, some constraints which prescntly seem compelling, such
as parallelism, locality and simplicity of computation, efficiency, uniformity, and extensibility
(Uliman, 1979b] have been factors in the theoretical analysis of the surface reconstruction problem
and in the search for algorithms (similar constraints are issues when considering implementations
within parallel, pipelined computer architectures). Once a specific algorichm is selected based

on these constraints, it may be implemented and its performance can be evaluated empirically
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in terms of the original computational goal. If the performance is consistent with psychological
evidence, the algorithm may be thought of as constituting an existence proof that the theory
adequately models the human vision system. This is what we are ultimately striving for in our

study of the surface reconstruction problem.

1.2. Overview

In this paper, we lay down the mathematical foundations of a multi-level approach to visual
surface reconstruction, primarily in the context of stereo vision. With the help of a physical
model, the basic surface approximation problem is given an intuitive interpretation. Although it is
in general a nontrivial matter to solve this problem, our model suggests the application of potent
methods which have arisen out of classical mathematical physics — the calculus of variations,
optimal approximation theory, and functional analysis. Aspects of the above formalisms are
employed to render our problem amenable to solution by numerical techniques. The development

is as follows.

) In Chapter 2, visual surface reconstruction is cast as an optimal approximation problem
which involves finding the equilibrium position of a thin flexible plate undergoing bending.
The problem is posed formally as a variational principle which we propose to solve by first

converting it to discrete form using the finite element method.

. In Chapter 3, we prepare the way for applying this discrete approximation method by
finding a set of minimal conditions for our continuous problem to have a unique solution.
We show that these requirements will almost always be satisfied in practice, so that we can
consider our surface approximation problem to be well-posed, and can proceed to obtain the

solution.

° In Chapter 4, we turn to the task of converting our continuous problem into discrete
form. To do so0, we define a simple nonconforming finite element which will constitute the
basis of our local, piecewise continuous representation of surfaces. Because the element is
nonconforming, we first must prove that it leads to unique discrete approximations, and
that these approximations converge to the exact solution as the elements decrease in size.
Having done this, we derive the discrete surface approximation problem as a large system

of linear equations.

) In Chapter 5, we face the task of solving this linear system efficiently in a biologically-feasible
way, and it is here that we motivate the multi-level approach for obtaining the solution.
The approach involves setting up a hierarchy of discrete surface approximation problems
which span a range of resolutions and exploit the information available at each scale, and
subsequently invoking a multi-level algorithm to solve them simultaneously. We demonstrate

the efficient performance of the multi-level surface reconstruction algorithm on constraints
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from stereopsis, and demonstrate that it generates a useful hierarchy of accurate surface

representations.

P

° In Chapter 6, we reexamine our surface reconstruction problem and show that it is a special

case within a general class of optimal interpolation problems involving arbitrary degrees of

d | continuity, in any number of dimensions. These general problems involve the minimization ¥
of functionals which possess a number of invariance properties making them attractive for

application to problems in early vision whose solutions require the iterative propagation of

smoothness constraints across retinocentric representations. !

. In Chapter 7, we conclude by discussing the overall implications of our approach to issues

concerning the isolation of depth discontinuities, and the incorporation of other sources of

\ information such as surface orientation. We discuss possible solutions to these problems in
view of our finite element representation of surfaces and the multi-level surface reconstruction

algorithm. )

. For convenience, in two of the appendices, we cover the relevant mathematical background

of the finite element method and the iterative solution of large linear systems.

2. THE MOST CONSISTENT SURFACE

The sparse information about surface shape retrieved by the various vision modules is in 3
general underconstraining. That is to say, it is insufficient to compel a unique inference of the !
physical properties of the surfaces in the scene. Yet, even when presented with impoverished
stimuli (such as random dot stereograms [Julesz, 1971] or kinetic depth effect displays [Wallach
and O’Connell, 1953; Wallach, 1959; Johansson, 1975; Ullman, 1979a; etc.]), the human visual
system routinely arrives at unique interpretations ana our typical perception is a stable one of |
full surfaces in depth. Clearly, the visual system must invoke certain assumptions which provide h
enough additional constraint to allow a unique full surface representation to be computed from
the sparse information provided. However, these additional assumptions must be plausible in that

they reflect certain domain-dependent expectations. For example, in stereo vision, the sparse

7 'i information takes the form of depth constraints which embody measurements of the distances
from the viewer to the surfaces of objects in the scene. The additional assumptions should then

be based on general expectations about physical properties of surfaces in the visual world, as well

as aspects of the optical and computational processes taking part in the generation of the depth

constraints.

Grimson [1981a) explored a number of issues along these lines. Qualitatively, his thesis is

as follows. A surface in the scene which varies radically in shape usually gives rise to intensity

changes which are marked in the primal sketches as zero-crossings of the Laplacian of the
Gaussian-convolved images (V2G ¢« I — see [Marr and Hildreth, 1980; Hildreth, 1980]). Moreover,
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it is only at the locations of zero-crossings that the Marr-Poggio stereo algorithm can generate
measurements of the distance to the surface, in the form of explicit depth constraints. Therefore,
the surface cannot in general be varying radically in depth between the constraints to which it
gave rise. By introducing this additional surface smoothness assumption, the goal of accurately
reconstructing the shape of visible surfaces and thereby computing full surface representations
consistent with our perception is attainable in principle. A theoretical proof of this statement lies
in the domain of mathematics. In the next section, we take the first step by rigorously formulating
the surface reconstruction problem as an optimal approximation problem in which the smoothness
assumption has a clear intuitive interpretation, and which eventually leads to efficient multi-level

algorithms for its solution.

2.1. A Physical interpretation — The Bending of a Thin Plate

Visual surface reconstruction can be characterized formally as a constrained, optimal
approximation problem in two dimensions. In the context of stereo vision, where constraints
embody depth measurements to surfaces in the scene, the goal is to reconstruct, as accurately as
possible, the shape of the surface which gave rise to these measurements. Of course, it is necessary
that we be able to deal with the complication arising from arbitrarily-,laced constraints since, as
has been argued, constraints of this type are generated naturally by stereopsis and other vision
modules. More rigorously, the problem can be stated as follows: given a finite set of arbitrarily
located distinct point constraints on a plane, each constraint having a real scalar value associated
with it, find the unique optimal function of two variables which is most consistent with these
consiramnts. Our notion of consistency will be dcfined shortly. We consider the solution to our
problem to be a full surface representation in that it makes explicit our best estimate of the

distance to every visible point on the surface in the scene.

The constraints provided by the stereo computation are rever completely reliable. Errors due
to noise, and errors in matching corresponding zero-crossings are bound to occur. This suggests
that we should not try to interpolate the given data exactly because a few “bad” constraints
can have a detrimental effect on the shape of the recovered surface. Relaxing the interpolation
requirement turns our problem into ome of surface approximation in which we would like to

maintain control over how closely the surface fits the data.

By thinking iu terms of an optimal surface, we imply the choice of a suitable criterion that
will allow us to measure the optimality of admissible functions. A suitable criterion for measuring
the optimality of surfaces in the context of surface approximation in stereopsis translates into
a precise mathematical statement which captures intuitive notions about the smoothness of
admissible surfaces as well as their closeness of fit to the known depth constraints. Perhaps the
intuitively clearest treatment of our problem is in terms of a physical model. Consider a planar
region {1, the region within which we wish to obtain an optimal approximating surface most

consistent with a finite set of sparse constraints. Let us imagine that the constraints constitute a

i ekt - v b -
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Figure 3. The physical model for surface approximation.

set of vertical pins scattcred inside {1, the height of an individual pin being related to the distance
from the viewer to the surface in the scene. Suppose that we take a thin flexible plate of elastic
material that is planar in the absence of external forces, and constrain it to pass near the tips of
the pins by attaching ideal springs between the pin tips and the surface of the plate as shown in
Figure 3. It is not difficult to imagine the equilibrium position of the plate as a function of the

various pin heights.

Intuitively, the equilibrium position of the thin plate is a “fair” approximating surface in
that it will exhibit a sufficient amount of smoothness between the constraints. Moreover, on
quantitative grounds, there is evidence to suggest that such a surface is indeed an optimal one in
terms of the imaging process [Grimson, 1982b]. In any case, we have a reasonable physical model
for the optimal approximating surfaces and, moreover, this model will suggest good strategies for

solving our problem.

We emphasize however that the appropriateness of the model depends on two important
issues. The first involves ensuring that a unique solution exists, and the second is to guarantee
that the solution is meaningful in view of the constraints. Firstly, we realize that the plate-spring
system will be unstable for certain pin configurations. If we have but a single pin, then a stable
equilibrium does not exist, as the plate has two unconstrained degrees of freedom (rotation about
the axis of the pin is excluded). A similar degenerate situation arises for the case of any number

of pins arranged linearly, the plate then having one unconstrained degree of freedom. Clearly
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at least three noncollinearly arranged pins are required to assure that a unique state of stable
equilibrium exists. Secondly, a reasonable choice must be made for the stiffness of the springs.
If the springs are too strong in relation to the rigidity of the plate material, then a pin whose
height deviates significantly from that of its neighbors (i.e. an erroneous constraint) will place an
abnormally large amount of strain on the plate locally and have undesirable cffects on the shape
of the surface. On the other hand, if the springs are too weak, the intrinsic rigidity of the plate
can overwhelm them and the plate will remain nearly planar over large variations in the height
of the pins. In the limit of a rigid plate, the resulting planar, least-squares approximation would
be meaningless in that the solution does not in general lie close to constraints other than those

arising from nearly flat surfaces.

We will now proceed to a mathematical characterization of the above physical model. To do
50, we apply the well-known minimum potential energy principle from classical mechanics, which
states that the potential energy of a physical system in a state of stable equilibrium is at a local
minimum. For the model, the potential energy in question is that due to deformation of the plate
and springs, as well as the energy imparted by any externally applicd forces. In this sense then,

the surface we seek is one of minimal energy.

First, consider the plate. It is known (see, e.g., [Courant and Hilbert 1953, pg. 250}, [Landau
and Lifshitz, 1970]) that the potential energy of a thin plate under deformation is given by an
integral of a quadratic form in the principle curvatures of the plate. If the principle curvatures
of the deformed plate are denoted by x; and x,, the potential energy density is given by an

expression of the form
A s AN
E("f + &3) + Bryxg = 2A(%2) — (A — B}y,

where A and B are constants determined by the plate material. The expression }(x; + %) is the
first or mean curvature and K,k is the second or Gaussian curvature of the plate’s surface (see,
e.g., [Hilbert and Cohn-Vossen, 1952]).

Let the function v(z,y) denote the deflection of the plate normal to the region {1 which can
be taken to lie in the X-Y plane. Assuming that the deflection function and its partial derivatives,
V,Vz,Vy,... are small, it can be shown (see e.g. [Rektorys, 1969, pg. 368]) that

i+ %o ~ 1

2
3 EAv, K1K2 82 VzzVyy — Vg,

where 4L = b"—’, + bp;;f denotes the Laplacian operator. Thus, the potential energy density can be

written in the following forms:

z

10
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f

€ %(A")2 — (1 — 0)(vzzvyy — ”Zv)

1
= 1% £ 20, L) ofonrmy —o2,) )

- % o(Av) + (1 — o)(v2, + 202, +92,)],

apart from a multiplicative constant which depends on the physical properties of the elastic
material of the plate, and which has been set to unity without loss of generality. The constant o,
called the Poisson ratio, measures the change in width as the material is stretched lengthwise.t
The desired potential energy of deformation is obtained by integrating the energy density over

the domain in question, and is given by

E(v) = //n %(Av)'2 — (1 — 0)(vazvyy — v3,) dz dy.

To the potential energy of deformation, we must add the potential energy due to any
external forces which may be present. The energy due to a force density g(z,y) applied to the
surface of the plate (such as the effect of gravity) is given by

Eo(v) = —//ﬂgvdxdy.

External forces and bending moments may also be applied around the boundary 31 of Q. The
cnergy due to a force density p(s) on the boundary (s denotes arc length along the boundary) is

&)=~ [_elouas,

while the energy due to bending moments applied around the boundary is

Eq(v) = — /an m(s)g ds,

where m(s) is the density of applied bending moments normal to the curve and % denotes the

directional derivative along the outward normal to 401.

Finally, we must account for the potential energy of deformation of the springs. Let C
denote the set of points in {1 at which the imaginary pins are located; that is, the sparse set of
locations at which the surface is constrained. Furthermore, denote the height of the pin (the value
of the constraint) by real scalars c(;, ) and the stiffiness of the spring attached to it (influence
of the constraint) by positive constants §(;,y,) for all (z;,y:) € C . According to Hooke's law for
an ideal spring, the total potential energy of deformation in the springs is given by

'From the last expression in (1), it is apparent that the potential epergy density may be considered
to be a convezr combination with parameter o of the square of the Laplacian ard a quadratic term in
second-order partial derivatives of the deflection function, (v:, + 20, + v:,). This fact will be used in
a subsequent discussion.

1




T

5 e a1

YT T R

ML i acny

TERZOPOULOS MULTI-LEVEL SURFACE RECONSTRUCTION

1
2

Es(v) = Z p(znv.')["(zn vi) — c('zi-v-')la'

(ziwi)eC

The equilibrium state of the mechanical system can be obtained as the solution to the

following minimization problem which is referred to as a varsiational principle:

The deflection of the plate at equiltbrium is that function u from a set V of admisasble
Junctions v, for which the total poleniigl coergy— -

€(v) = &i(v) + €2(v) + E3(v) + E4(v) + £5(v) (2)

s minsmal.
Thus, quantitatively, the "most consistent” surface which we seek is the one having minimal

energy &.

The visual surface approximation problem has been posed, in integral form, as a variational
principle which is quadratlic in that it involves terms that are at most quadratic in v and its
derivatives. Through the formalism of the calculus of vartations one can express the necessary
condition for the minimum as the Euler-Lagrange equation which in this case can be shown to
be é linear, self-adjoint, partial differential equation. Much of classical mathematical physics is
based on this duality, and it provides numerous techniques for solving our problem, those which
are directed towards the variational principle, as well as those which are directed towards its

Euler-Lagrange equation.

Whatever the strategy, although it is conceivable that the exact analytical solution u
could be derived, it is normally impossible to do so for all but the simplest-shaped domains M.
Consequently, we are led to consider a numerical approach in which we somehow convert our
continuous problem into a discrete problem whose numerical solution closely approximates the
exact continuous solution u. We propose to employ what is probably the most potent tool for
obtaining discrete approximations currently available — the finite element method. The method is
applied to the variational principle directly and, because the variational principle is quadratic, the
resulting discrete problem will take the particularly simple form of a linear system of algebraic
equations. The main advantage of the finite element method is its generality. In the context
of our surface approximation problem, it can be applied over domains Q1 of complicated shape,
and it is not limited to uniform discretizations of these domains. The importance of the latter
property in the context of vision is evident when one considers, for example, the nonuniform
structure of the retina where it is known that resolution decreases approximately lincarly with
eccentricity (see [Wilson and Giese, 1977} and [Wilson and Bergen, 1979] for a quantitative model
of this phenomenon in terms of the spatial-frequency channels in early vision). Moreover, the fnite
element method leads to linear systems which are readily solvable in a parallel, iterative fashion
by a sparsely-interconnected network of simple processors, a mechanism which seems prevalent in

early vision.
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For several reasons, we have avoided the alternate route of using the well-known finite
difference method to discretize the associated Euler-Lagrange equations (sce, e.g., [Collatz, 1966,
[Forsythe and Wasow, 1960], [Smith, 1977}). The finite difference method is much more restrictive
in that it practically limits us to uniform discretizations, the underlying convergence theory is
much less well developed and, perhaps most importantly, it becomes very difficult to discretize
the natural boundary conditions associated with our surface approximation problem, a task which

is done trivially by the finite element method.

The mathcmatical background of the finite element method that is of relevance to our
problem is included in Appendix A for convenience. The appendix introduces the required theory
and lists the fundamental theorems which we will invoke in applying the method to the task
at hand. The process will consist of several steps. First we pose the variational principle in an
abstract form that is the basis of the mathematical machinery presented in Appendix A. Next,
we determine formally the requirements on the boundary conditions that must be satisfied to
ensure that our variational principle is well-posed; i.e., has a unique solution. Only then can we

proceed to apply the finite element method to approximate the solution.

3. THE VARIATIONAL PRINCIPLE

In this chapter we analyze the continuous variational principle which embodies our visual
surface approximation problem, in preparation for the application of the finite element method.
In view of the formalism presented in Appendix A, our first goal is to state the variational
principle in the abstract form; that is, to isolate the energy inner product which characterises our
minimization problem. We then derive the associated Euler-Lagrange equation and, in the process,
consider the various forms of boundary conditions that can be imposed. Finally, we choose the
appropriate form of these conditions in view of our visual surface approximation problem and

obtain formally the minimum requirements for our variational principle to be well-posed.

3.1. The Energy Inner Product

According to equation (2.2), our variational principle asserting that the equilibrium state of
the thin plate is a minimal-energy configuration, may be stated mathematically as the minimisation

of the expression

E(v) = .//n %(Av)2 — (1 — o)(vzzvyy — v2,) — gvdzdy

- /an p(s)vds — /m '"(s)g% do+ % > [ozivd — el

{zi,u¢)EC

1)

Here, we bave assumed that the spring stiffnesses 5., ,,) = f for all (z,y;) € C. The admissible
space V for our variational principle is in general a subspace of the second-order Sobolev space
X3() over the region {1 (refer to the discussion in Appendix A). If ¥ € V minimises £, then

13
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£(u) < £(u+ev) for any v € V. Therefore, to obtain the necessary condition for the minimum, we
substitute for v the small variation u + ev about u and equate to sero the derivative with respect

to € for ¢ = 0. Equivalently, we may perform the variation using the rules of differentiation:

§&(u)= // Aub(Au) — (1 — o){urz8(uyy) 4 uyy6(uz:) — 2uzyd(u,y)] — géudx dy

_/ p(s)buds — / m(s)&( )da—i—ﬂ Z [u(zi,y.-)—c(,i',i)]éu(z.,y().

(zi 0 )EC
Since variation commutes with differentiation, §(Au) = A(6u), 6(8%) = £(6u), 6(uyy) = (6u),y,
etc. If we now let v = fu, and set §& = 0, we obtain
//ﬂ AulAv — (1 — o) uzsvyy + UyyVee — 2Uzyv.,) — gvdzdy

— / p(s)vds — / m(.’)—— ds+ 8 E [u(z.,y.) — c(,_.y‘)]v(z,, vi)=0.

(zi,y4)EC

2

Equations (1) and (2) may be cast in our abstract variational formulation of Appendix A.

The key is in identifying the energy inner product as the bilinear form

a(u, v) = // AuvAv — (1 — 0)(UzoVyy + Yyyvzz — 2u, vz )dzdy + B Z u(z,, ¥, )Wz, ¥i),
f (ziwvi)EC
@)

and in writing the linear form as

fv) = // gvdzdy+/ p(a)uda+/ m(a)—da—{-ﬂ Z [c(,“m)u(z.-,y.») lc(,"v.] (4)
(zi,wi)EC

Clearly then, (1) asserts that we are to minimize the quadratic functional £(v) = }a(v, v) — f(v),

as required in the definition of the abstract variational principle (Definition A.1). On the other

hand, (2) which expresses the necessary condition for the vanishing of the first variation may be

written as a(u, v) = f(v), as expected from the discussion leading up to the variational equation

(A.10).

Having obtained expressions for the bilinear and linear forms, we can proceed to bring the
finite element method to bear on the problem. Before doing so, however, it is imperative that
we carry the analysis further so that we can express the necessary condition for a minimum
as a partial differential equation, explore the issue of boundary conditions, and ensure that the

problem is well-posed.

3.2. The Euler-Lagrange Equation and Boundary Conditions

For the duration of this section, we will ignore the summation term arising from the (spring)
constraints, since its presence will complicate the notation while making no significant contribution

to the discussion. First, we will transform the energy inner product af-, :) given in (3) using

14
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integration by parts in two dimensions; i.e. Green's theorem. Let n be the outward normal vector
to Of, t be the usual tangent vector along 30, and # and # denote partial differentiation
along the normal and tangent respectively. Assuming that u is fourth-order differentiable, Green’s

identity (see, e.g., [Ciarlet, 1978, pg. 14), [Rektorys, 1969])

| //uAv—vAudzdy:/ ug-!-—vg'ida
n an On on

may be used to transform the term AuAv arising from the mean curvature of the surface:

! ov 2]
4 : AuA d=//A’dzd —ds — —(Au)ds,
¥ /./n wAvdsdy nv u v+ anAuan g anvan( u)ds (5)

where A%u = AAY = Uzz- + 2uzzyy + Uyyyy- On the other hand, the Gaussian curvature term

can be transformed using the identity [Ciarlet, 1978, pg. 15

9%u v 8%u v
//n"u"w + Uy v, — 2ug v, dzdy = oo 98 3n ds — o B3t Bt ds. (6)

If the boundary is sufficiently smooth, it can be shown (see [Rektorys, 1980, pp. 268-269]) that
the second boundary integral can be written as

3%u 3v / d{ 3%u
/;)n dndt ot s = on Ea_(anat)"d" O

Substituting equations (5)-(7) into (3) (and ignoring the constraint term), we obtain

- 2 9y
a(u, v) = //nvA udzdy + /anP(u)vds + ./alnM(u)an ds,
‘ where
! ) d [ du
Pl) = — 2 (80 + (1 - )2 ( o )
o%u

M(u) = Au—(1 —-0)a—t2-.

Thus, the necessary condition for the minimum (2) becomes

[ [@t—apasay+ [1pe)—polvas+ [ (M)~ mio) 22 do =0

Now, since the above equation must hold and since v and 8% are arbitrary on the closed

T e R
' RN
e o A

region {}, we must have

A2y=g infl (8)

This is the fourth-order, linear, self-adjoint Euler-Lagrange equation that governs the small
deflection of a thin plate at equilibrium, and it is satisfied by u inside fI regardless of the i
; boundary conditions on 80. In its homogeneous form A%u = 0, it is called the btharmonic

equation. Furthermore, u must satisfy the natural boundary conditions

15
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P(u) =p(s) and M(u)=m(s) on oM. 9)

According to (6), the integral over 1 of the Gaussian curvature approximation (v,,uw — Zva)

has no effect whatsoever on the Euler-Lagrange equation, but contributes only to the boundary

conditions.? This reflects the fact that the Gaussian curvature of a surface patch is invariant as the
surface is subjected to arbitrary bending, and that its average value over the patch depends only
on the tangent planes of the surface around the periphery of the patch [Hilbert and Cohn-Vossen,
1952, pp. 193-204]. This invariance property of the Gaussian curvature renders it inappropriate as

a measure of surface consistency. For example, it cannot distinguish two developable surfaces such

as a wildly undulating sinuscidal surface and a planar surface, both of which are cylinders and
therefore have sero Gaussian curvature everywhere, On the other hand, the mean curvature does
not in general remain invariant under bending and therefore plays a vital role in our energy inner
product. This is evident from equation (1) — no value of o can make {Av)?, which approximates

the mean curvature, vanish.?

Another consequence of the necessary condition for the minimum is that the form of the
natural boundary conditions satisfied by u are determined by any essential boundary conditions
which may be imposed on v. In general, we can impose up to two essential boundary conditions,
one on v and the other on #. First, consider the case of a simply supported plate where the

! essential boundary condition v = 0 is imposed on 31 but $¥ is left unconstrained. The solution

% must then still satisfy the second condition in (9). We therefore have the Neumann boundary

conditions
u=0 M(u)=m(s) on oM,
and, moreover, the first contour integral in (1) vanishes.

Next, suppose that we aleo set §2 = 0 on 801. Then,

' u =

=0 on 81, (10) 1

Fle

which are the Dirichlet boundary conditions for the clamped plate. In this case, both contour
- | integrals in (1) vanish and, moreover, o is arbitrary since it does not appear in the Euler-Lagrange
A f;'i, equation (8), but only in the natural boundary conditions (8) which bave now been replaced
a % by (10). We can therefore greatly simplify the variational integral. In particular, the functional

minimization problems involving

*Expressions possessing this property are called divergence expressions [Courant and Hilbert, 1953]. L

*Brady and Horn [1981, pg. 29] state that “the choice of which performance index to use is reduced
to the square Laplacian, the quadratic variation, and lineer combinations of them”. We stress that one
should be careful not to choose that linear combination which results in a divergence expression (the
Gaussian curvature) and therefore hr.s an identically sero Euler-Lagrange equation. Recall from equation

X (2.1) that the small-deflection theory of the thin plate allows only a convezr combination so, fortunately,
it is free from danger.in this respect.
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€(v) = //n%(Av)’ —gvdzdy, foro=1,

and

1
E(v) = //n 5(03, + 2vzy + vzv) — gudzdy, for o =0,
are equivalent in the Dirichlet case.

Finally, consider the case of a free boundary; that is, when the externally imposed force p(s)
and moment m(s) on the boundary are zero. Then, there are no constraints on v but, according

to (9), u must satisfy
P(u)= M(u)=0 on 30.

These are the natural boundary conditions satisfied by the solution for the case of the free plate.

Once again, the contour integrals in (1) vanish and the energy functional takes the simple form

) = / /n %(Au)2 —(1 — a)(v,,vw — u';',) — gvdz dy.

In general, the admissible space V is the subspace of the Sobolev space ¥*(f2) which satisfies
the essential boundary conditions imposed on the plate. If, for example, a portion of the edge
of the plate is simply supported, V' will consist of functions which satisfy the essential condition
v =0 on that portion of 8. If part of the edge of the plate is clamped, then v = §¢ =0 on
that part of 9f1. On the other hand, if part of the edge is free, then no constraints are imposed
on v over that portion of the boundary and, in the case of the free plate, V = ¥3(Q1). Of course,
the plate cannot be “too free” on {l, because then the physical system cannot achieve stable
equilibrium and a unique solution would not exist. Precisely how much freedom can be allowed

will be established formally in the next section.

3.3. When is the Problem Well-Posed?

Turning to our visual surface approximation problem, we should at this point choose the
appropriate form of boundary conditions on Jfl. Since the only information about the surface
that is provided by the stereo module, for example, is embodied in the sparse constraints, the
strategy of least commitment is to “assume nothing” about the boundaries of the surface. In
terms of our plate problem, this means that we should impose no essential boundary conditions
on the plate; that is, we solve the free plate problem whose admissible space V = ¥?(Q).

If the boundary of the plate is free, it is clear that the constraints will play a critical role in
providing a unique state of stable equilibrium. Our goal in this section is to specify the existence
and uniqueness requirements mathematically as coaditions under which the surface approximation
problem is well-posed. To do this, we will invoke Theorem A.l1, and saiisfy its conditions by

proving the following two propositions.
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Propaosition 1. The energy inner product a(-, ') is symmetric.
Proof. a(u, v) = a{v, u) is evident by inspection of equation (3). §

Propasition 2. If the set of constraints C contains (at least) three noncollinear points, then af, -)
is V-ellipticfor 0 < o < 1.

Proof. We want to show that there exists an o > 0 such that a(v, v) > al|v|]?, for all vE V.

To do s0, it is sufficient to show that a(v, v) = O only if v = 0. We rewrite a(v, v) as

a(v, v) = //‘;c:r(Au)2 + (1 --o)(v2, + 202, + v} )dzdy + B 2 o(z,, ¥i)?.
{zi 0, )JEC

Now, Av =0 only if v is a harmonic function, while (v, + 203 + vl ) = O only if v is a first
degree polynomial (as can easily be shown by integration}, which is a subclass of the harmonic
functions. Thus, the integral is > 0 for 0 < ¢ < 1 and it is sero only if v is a linear function
over {]. On the other hand, since f# is positire by definition the sum is also > 0 and it is sero
only if v(zi, ) = 0 for all (z:,¥,) € C. Therefore, if C contains three noncollinear points, then
a(v, v) = 0 only if v = 0, implying that v, , ) is "-eiiiptic. @

By Propositions 1 and 2 and Theores .\. ", we are assured that the continuous approximation
problem is well-posed if 0 < 0 < 1 aad the set of constraints includes at least three noncollinear
points. The condition on the constraintr is not umexpected in view of the arguments made in
Section 2.1. Physically speaking, all unconstrained degrees of freedom of the’ plate must be
precluded, and three noncollinear constraints is clearly the minimum requirement for this to be the
case. In application to natural images, the stereo algorithm will almost always generate at least
three noncollinear points, so we can, for all practical purposes, consider our surface approximation

problem to be well-posed so long as 0 < ¢ < 1.

4. OBTAINING THE DISCRETE PROBLEM

So far, we have been dealing with the continuous form of our surface approximation problem.
We formulated it in the required abstract form, selected appropriate boundary conditions, and
showed that it is well-posed in practice. In this chapter, we face the task of applying the finite
element method to transform the variational principle into an appropriate discrete problem whose
discrete solution can be computed fairly easily. Our piecewise continuous representation of surfaces
will be based on a very simple finite element which is, howrwer, nonconforming. This will force
us to introduce an approximate variational principle and to show that it has a unique solution
which eonverges to the exact solution as the elements shrink in size. Only then can we undertake

the next step which is to derive the discrete problem explicitly as a linear system of algebraic

equations.
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4.1. Conforming vs Nonconforming Methods

Our well-pésed variational principle satisfies all the necessary conditions to guarantee that
any conforming finite element method applied to it will converge. In principle, it is straightforward
to apply a conforming finite element method according to the steps in Appendix A. We generate
a finite element space S* which is a subspace of our admissible space V, and apply the Rits
method to find that function u* € §* which optimally approximates the exact solution u € V.
The approximation is optimal in the sense that it is closest to u with respect to the strain
energy norm a(-, -)}, or equivalently, that the strain energy in the error a(u — u*, u — u*) is
minimal. To construct a conforming finite element subspace, we must satisfy the completeness and
conformity conditions given in Section A.4. Since the energy inner product a(:, -) contains partial
derivatives of order m = 2, the completeness condition requires that the local polynomial defined
within each element subdomain E must be at least a quadratic; P¥ O N*(E) for all E € T*
(TI"(E) denotes the set of n't degree polynomials over E). On the other hand, the conformity
condition states that the polynomials must be of class C! across inter-element boundaries, and
consequently S* C C'(f}) globally. In satisfying both conditions, we are guaranteed that the finite
element space is a subspace of the admissible space V, and that there exists a unique optimal

approximation u® ¢ §*.

If f1 is a polygonal region, elements with straight sides will suffice. A number of such elements
which are conforming for m = 2 (i.e., problems characterized by fourth-order Euler-Lagrange
equations) are available. Examples are the Argyris triangle, Bell triangle, and Bogner-Foz-Schmidt
rectangle (see, e.g., .Ciarlet, 1978], [Strang and Fix, 1973], [Zienkiewics, 1977] and the
refercnces therein). Unfortunately, we can expect serious computational difficulties to arise in the
implementation of these conforming methods. The basic source of difficulty is the requirement
of continuity of first partial derivatives across inter-element boundaries — either the structure
of the conforming element spaces PZ becomes complicated, or their dimension is large. For our
problem, the simplest conforming polynomial element is the Bell triangle, in which we have a
quintic polynomial uniquely determined by 18 nodal variables consisting of the approximation v*,

as well as its first and second partial derivatives at the three vertices.

As is described in Appendix A, the dimensions of the finite element space can be reduced by
the use of nonconforming elements. A popular nonconforming element for fourth-order problems
is Adini’s rectangle, whose local function pF is a 12 degree-of-freedom polynomial with nodal
variables being the approximating function, as well as its first partial derivatives at the four
vertices. The element is nonconforming since it is only of class C® across inter-element boundaries.
Many other nonconforming elements have been developed for fourth-order problems (see, e.g.,
[Ciarlet, 1978, [Strang and Fix, 1973], {Zienkiewics, 1977]).

For this initial implementation, we have chosen to reduce the dimensions of the finite element

space as much as possible by defining what for our protlem is probably the simplest successful
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nonconforming element imaginable. This element will be defined next.

4.2. A Simple Nonconforming Element

We will define a finite element space by the standard procedure outlined in Section A.4. «

| Suppose that {1 is rectangular, and consider a uniform triangulation T* of {} into identical square :
elements F, where the fundamental length h is the length of a side of E. By definition, we require

that Jpcys E = fl and that the elements be adjacent and overlap along their sides. A point in

f1 is a node of the triangulation if it is a vertex of an elemental square and, as usual, we consider
the elements to be inter-connecied at the nodes. The nodal variables, will simply be the node

displacements; i.e., the values of the function v* € S* at the nodes. ' ;

The next step is to define a space PZ of polynomials pF over the element domain. The
polynomials must satisfy the completeness condition which states that [12 C PE, since the energy
inner product contains derivatives of order m == 2. This is the requirement that the polynomials
be able to reproduce exactly all states of constant strain which, in this case, are all polynomials
up to degree two. We will satisfy this requirement by choosing PF to be the six-dimensional

space of full second degree polynomials p*: E ~» ® such that

po(z,y) = a2’ + by + czy + dz + ey + f, (1)
where the six real parameters a to f are to be determined.

We must ensure that pZ is uniquely specified within E in terms of the ﬂode displacements.

To do so, we isclate a representative element and set the origin of the X-Y coordinate system

at its lower left hand wrﬁer, as illustrated in Figure 4. Our task is to choose a pF-unisolvent

set of nodes, the displacements at which uniquely determine pE. An appropriate choice is

the six nodes shown in the figure, whose node displacements are denoted by v, , € R, for

.: {1, 5) € {(—1,0),(0,0),(1,0), (0, —1),(0, 1),(1, 1)}. Expressing the six unknown parameters in terms q

of the node displacements is then a simple matter of substituting the displacements into (1) and

solving the resulting nonsingular system of six equations. We obtain i

3 ,i{ g = 5)1117(“'0 — 2vg,0 + V—1,0),
‘ b= 2—}'—2(vo,1 — 2vp,0 + Vo,—1),
¢ = %(v,,; —V¥g,1 — V1,0 + Vo,0) ()
d= ﬁ(vl’o —V—1,0)
fe :é—if:o.l — ¥o,—1),

Of course, the six degrees of freedom of this element are insufficient to enforce C! continuity

of v* across inter-clement boundaries. Therefore, the element is nonconforming; S* ¢ C!(f1). It
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Figure 4. Unisolvent nodes for the nonconforming clement.
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is a simple matter to show that the polynomials p¥ are in general discontinuous across element
boundaries, although continuity is maintained at the nodes themselves because each polynomial
' interpolates its unisolvent set of nodal displacements. At this point, we acknowledge that our
n ) element is somewhat unorthodox in that the definition of p® requires nodal variables associated
with two nodes which lie outside the element domain E. The justification for this transgression
is that our element, as defined, will yield a discrete system whose matrix is particularly simple
and uniform in structure. This will simplify the eventual implementation considerably. On the

other hand, alternate arrangements for the unisolvent set of nodes are clearly possible. Perhaps

a more appropriate choice from a biological standpoint would be a hexagonal triangulation with
the unisolvent set of nodes placed at the vertices of hexagonal element domains E having sides
of common length h. Regardless of our particular choice, the quadratic elements must first be
shown to be convergent since they will invariably be nonconforming. This we will do in the next

section for the simple square element.
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4.3. The Approximate Variational Principle

Due to the nonconformity of the elements, $* 7 ¥*(f1) = V, and the finite element space
is not a subspace of the admissible space V. Therefore, in lieu of the energy inner product a(:, ‘)
of equation (3.3), we are forced to substitute the approximate energy inner product a(-, -), given
by (A.16), which can be written as

an(ut, W)= > /./; AutAvh — (1 —o)(ul vh, + ul vk, —2uk v} )dzdy

EeTh
+ ﬁ Z u"(za. y.)v"(:r..-, yi)
(z90)EC (3)
= ET,‘ / ./;aAuhAvh +(1— ”)(“:z”:z + 2“2vv:v + u:lfv:l’) dz dy
Ee
+ ﬁ Z uh(x.-, y;)vh(zu yi)’
(2.,y:)EC

where 0 < 0 < 1. The corresponding approximate variational principle and variational equation

are given by equations (A.17) and (A.18) respectively.

Does the approximate variational principle have a unique solution 4" € $"? To answer this
question, we proceed in the spirit of Section A.5 by equipping S* with a norm which we will

employ to show that a,(-, -) is uniformly S*-elliptic.

Proposition 3. The mapping ||v*||,: S* — R defined by

+
uv"||,.=(21v"|§,g+ > vh(z.-.y.)’).

EeTh (z:i,0:)EC

where [o*|2. 2 = (J [p(vh,)? + (v2,)2 + (v},)2 dz dy)*' is the second-order Sobolev semi-norm (see

(A.3)), is a norm over S*.

Proof. [||| is a priori only a semi-norm over S". Consider a v* € S* such that |jv"||, = 0.
Then it must be the case that (i) [v*|;,x = 0 for ail E € T*, and that (ii) v*(z,,y,) = 0 for
all (z,,y,) € C. Because of their interpolatory nature, the local polynomials p¥ are continuous at
all the nodes. Moreover, by condition (i), v" must be a first-degree polynomial inside every E.
With a = b = ¢ = 0 in equation (2), it is a simple matter to show that this implies that v" is a
continuous linear function over {}. Now, by condition (ii), v* is sero at all (z,,y,) € C. Since the
continuous problem is assumed to be well-posed, C contains at least three noncollinear points.

Consequently v* = 0, and ||||5 is therefore a norm. §

Proposition 4. The approximate energy inner product ay(-, ) is uniformly S*-elliptic.

Proof.
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ar(v*, u") = Z .//I;U(Au")2 4 (1 — a)[(vi'x)"’ +- 2(ugy 2 4 (UCy 2] dzdy -+ 8 Z v(z,, ¥.)?

EETH (2,,4,)6C
= (1 —a)( > / / (Vi) + (v5,) + (vy,) P dzdy -+ ) v"(z.,y.)2)
IFeETH E (.4, )EC
+ Z ‘/‘/va(Av")2 + (1~ a)(v.'x'y)2 dzdy + (8 + o0 —1) Z v (z,, y.)?
LeTh E (£,.4:)EC

>(1 ——a)||v"||,21, for 0<o<l, f21—0.
Since 1 — ¢ is positive for 0 < o < 1, ay(;, -} is uniformly Sh_elliptic. @

Therefore, the approximate variational principle has a unique solution u" € §*. Moreover,
because the ellipticity is uniform, Strang’s lemma (Theorem A.5) applies, and u" will converge
to the exact solution u € V as h — 0, if the approximation is consistent in the sense of equation

(A.21). To verify’ consistency, we apply the patch test, Theorem A.6.

Proposition 5. The square, nonconformug element whose local, quadratic function is defined by

(1) and (2) passes the patch test.

Proof. Consider an arbitrary patch of four adjacent elements, all of which share a common node
v,,; internal to the patch, as shown in Figure 5. Now, suppose that we impose a constant strain
condition on the patch; that is, suppose that we constrain the displacements at all remaining
nodes around the periphery of the patch by assigning to them values consistent with the function
75 € I12, an arbitrary second-degree polynomial. Next, we solve the approximate variational
principle (A.17) over the patch domain. This reduces to solving for the unknown displacement
at the common unconstrained node v,,, such that it minimizes a quadratic equation. It is a
matter of routine algebraic manipulation to show that the displacement obtained will also be
consistent with 7y (we omit the details). In fact, one can show that this is true for the internal,
unconstrained nodes of an arbitrary patch of any number of elements whose boundary nodes are

made consistent with 7. Therefore, the element passes the patch test. §

Having proved the above propositions, we can now be secure in the fact that our approximate
variational principle will provide unique discrete solutions which will converge to the exact solution
of the continuous problem as the discretization is made increasingly fine. A limit to the order of
convergence that we can expect from our approximation is given by (A.15) — since our element
is complete only through quadratics (k = 2), we are limited to a convergence rate of order h? in
displacement (s = 0). For a more precise statement, we should take into account the consistency
error term in equation (A.20). Nevertheless, we will bypass this complicated analysis because the
consistency error is not expected to be large for smooth u which is normally the case when

approximating smooth surfaces.

4.4, The Discrete Problem

We are finally ready to derive an explicit form of the discrete problem associated with our
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Figure 5. Applying the patch test to four adjacent elements.

E;. El

approximate variational principle. There are essentially two ways of proceeding. One possibility is
to find the Ritz basis functions ¢; which are associated with our finite element and which span
the space S*. The basis functions are nonconforming piecewise quadratics with local support, and
a basis function associated with each node of the triangulation. We can then use the variational
equation (A.18) directly, and write the discrete problem as the linear system of equations analogous
to equation {A.13) by computing the matrix coefficients a,(¢:, ¢;). Unfortunately, the piecewis:
continuous nature of the basis functions makes them tedious to manipulate, especially near
the boundary. We will adopt an alternate approach which altogether avoids the derivation and
manipulation of the basis functions. The approach is to solve the approximate variational principle
by minimizing the functional £,(-) of equation (A.17). Before doing so, however, we make two

additional simplifications.

The first simplification involves taking a conservative stance once more. There is no reason
to believe that the human visual system is biased in the depth values it assigns such as, for
example, making all of them too small or too large. That is to say, we have no reason to assume
that there is an external influence on the surface other than that provided by the constraints C,
and we should therefore nullify the externally-applied surface force: ¢(z,y) = 0. The linear form
(3.4) fo: the free plate then reduces to

f(u") = f Z (c‘,.,y.)v"(ﬂ:ny«) - ';’c%x.-.y‘))' (4)

(zi4)EC
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The 2econd simplification involves the choice of a numerical value for the constant ¢ in our
approximate energy inner product a,(:, -} given by (3). According to the proof of Proposition 4,
we are at liberty to choose any value in the range 0 < o < 1, therefore, the simplifying choice

0 = 0 will be made.* Setting o = 0 in (3), the energy inner product becomes

ah(u ’ U // Ury zz + 2u:y Ty + uyy vy dI dy + ﬂ Z uh(z" yl)vhlzu y‘»)‘ (5)

E€c T" (zi.y.-)GC

Thus, according to equation (A.17), we obtain the simplified energy functional

Enlo?) = 1ah(v" oh) — f(o")
Py z / /(vzz)2 + 2(’0:!’)2 + (vyy)2 dIdy + E Z [uh(z" yl) - c"ny-)]:"

EET" (n.y.-)EC

(6)

The expression inside the integral will be recognized as the “quadratic variation” expression used

by Grimson [1981a].

Since the triangulation over the rectangular region 1 is that of a uniform square grid, it is
convenient to impose on the nodes the natural lexicographic indexing scheme implied by Figure
4. We index the nodes by (5,7) for s =1,...,N,; and j = 1,..., Ny where N, and N, are the
number of nodes along the z and y axis respectively. The total number of nodes is N = N, X N,.
The displacement at node (i, 5) is denoted by the variable v:" ;» and all the displacements together
are denoted by the vector vh € RV,

The next step is to express the functional in terms of the node displacements with the help
of our element. Inside each element domain E, v" is a quadratic polynomial given by (1) and (2).

Therefore, the second partial derivatives of p£ are cons’ ant within E, and are given by

1
v:z’E = pfz =26 = h'_z(vnh-{-lq - 2v:1._1 +v:‘-—-l.));
1

'E pyy 2= 'hz (vh,J-H - 2v:l.1 + v:'l.J‘-l);
Vile=p7, =c= h2 (‘t+1.z+1 =V = Vi, V)
where it is assumed that 5,7 is the index of the lower left hand node of E. The form of these
second derivatives will be recognized as being simply the finste difference approximations of order
h? for the respective derivatives on a uniform, square mesh (see, e.g., [Abramowits and Stegun,
1965, pg. 884]). Of course, this result is a consequence of our particular choice of finite element,
and it will lead to a particularly simple discrete problem. With other elements one cannot expect

to obtain finite difference expressions, even for uniform triangulations. Substituting the expressions
‘Recall that o is the Poisson constant of the elastic material, so our choice implies that the material
does not change in width as it stretches lengthwise. Although this value is not meaningful physically, it

is perfectly acceptable mathematically. Aside from a question of convenience, there is further evidence
that supports this choice in terms of the optical laws of image formation (see [Grimson, 1982b}).
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for the derivatives into aj(v", v*) in (6) and noting that the area of each element is h?, we

obtain®
v 1 p
=3 = [ [orraemr v oiraa+f 3 o)

EeTh il (s.5)eC

K2 .
o =3 3 [(2a)2+2c2+(2b)*]+§ 3 (=)
3 EE€TA (Ly)ec
‘ 1

' — R K h 2 h h h hy2
'. =53 2 {("-+x.j =2 V) 2V — Ve — Vi, )

2] B 2
(=2, 8, |+ 2 T Gl — et )
(in)ec
We can write the above expression for the functional (aside from the additive constant term)

in matrix form as
Eu(v) = S(v*, AVP) — (1%, v%), o

where (-, ): RN X RN s R denotes the familiar Euclidean inner product, and A" € RVN is a
matrix of coefficients. Clearly, equation (7) is the discrete equivalent of the functional (6). For
the linear term, we have f* = fc”* where ¢ € R™ is a vector whose entries associated with
constraincd displaccments are the constraint values ¢!, and the rest are sero. On the other hand,
the matrix A" € R¥N which forms the quadratic term, is a matrix of coefficients which can
be brok:n down as the sum of two matrices: A" = Al + B". The matrix B" is a diagonal
matrix whose diagonal entries associated with constrained displacements are equal to £, and the
remaind:r are sero. As is clear from equation (A.13), the entries of the other component A% can
be interpreted as inner products between pairs of basis functions of the fnite element space S".
Since the basis functions have local support, most of these inner products will be zero thereby
making A* sparse and banded. Moreover, since by Propositions 1 and 4, the energy inner product

' is symmetric and S”-elliptic, A* is a positive definite, symmetric matrix. These are umportant

properties from a computational point of view.

§ To obtain the minimum of £,(v*) we set to zero its partial derivatives with respect to each

E 1
- of the displacements vf" e The minimizing vector of displacements u” satisfies the condition

Vén(u") = AMu — 1 =,

(where V7 is the gradient operator) which yields a discrete problem in the form of a system of

T

linear equations:

A
i
;
5
]

At = fhl (8)
where the entries of A* are given by

SWe als> assume for simplicity that all constraints c(s,,,) coincide with nodes (i,5) in T*. Hence, we
will denote the constraints by c! ;.
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Figure 6. Computational molccules associated with the discrete problem.

2 h
p=[ 28 gikgN, 1<ISH,
t,J '

From this expression, A* will be recognized as the Hessian matriz of the functiona! &, (sce, e.g.,
[Luenberger, 1973]).

Although the evaluation of the Hessian matrix entries is routine tor interior nodes, it is

tedious due to the special cases for the elements around the boundaries of the region {). We
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omit the details and give the final result in terms of a set of computational molecules which are
illustrated in Figure 6 in relation to the lower left hand edge of ? whose boundary is indicated by
bolc links. Obviously, computational molecules for the remaining edges are appropriate rotations
of those shown. The particular computational molecule associated with a node specifies the
(nonzero) coefficients of the equation for that node. For example, the equation for the displacement
at a node (¢,5) in the interior of the region (indicated by the double circle in the topmost

computational molecule in Figure 6) is

8 h h h h
— (Vi v vl i)

2/ n h A h
+ ﬁ(’.‘—n,;’—l + Vi—1 F Veen it Ve, 1)

1 (9)
+ h’i("?—z,; + vl ViV 4a)
+ -i—gvf'_, + Bvi'; = Bei,;.
The terms involving 8 are present only if there is a constraint c,,, at that node.
The sparseness of A" is evident from the above equation — matrix rows associated with

interior nodes have only 13 nonzero entries, while rows associated with nodes near the boundaries
have even fewer. Also, note that the computational molecule for the center of the region is a
factor ¢f h? (due to the elemental area) times the finite difference approximation of order h?
for the biharmonic operator [Abramowitz and Stegun, 1965, pg. 885] that is associated with the
Euler-Lagrange equation for our variational principle. This 18 an expected conscquence of our
particular choice of element which yielded finite difference app-oximations for the second partial
derivatives of v". Moreover, aside from muitiplicative constants, the same molecules were obtained
by Grirmnson [1981a] in the specification of a (conjugate gradient) mathematical programming
algorithm. As was previously argued however, the finite clcinent method is richer in that it
systemnatically suggests many alternative, less-restrictive triangulations, as well as more general

local representations for surfaces.

5. MULTI-LEVEL SURFACE RECONSTRUCTION

Az we have scen, the application of the finite element method to a well-posed quadratic
variational principle, such as the one on which our surface approximation problem is based,
inevitatly leads to an equivalent discrete problem which takes the form of a linear system of
algebraic equations. The matrix of coefficients of this nonsingular system is symmetric, positive
definite, sparse, and banded. Computing the most consistent approximating surface now amounts
to solving this system and, in this chapter, we adopt an eflicient hierarchical algorithm to perform
this task. We will proceed to develop the algorithm and to demonstrate its performance it on

constraints from stereopsis.
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5.1. Possible Methodologies for Solving the Discrete Problem

The solution of linecar systems is a very important problem in numerical analysis and the
many techniques which have been developed fall into essentially two broad classes — direct
methods which yield the solution in a finite number of steps, and iterative methods which typically
converge asymptotically to the solution (see, e.g. [Dahlquist and Bjorck, 1974] or [Gladwell and

{ Wait, 1979)).

Direct methods include matrix inversion methods such as Gaussian elimination and LU

decomposition. Although widely used for solving finite element equations, they usually do not
exploit the sparseness and bandedness of the system matrix because, during the inversion process,
¢ the sparse matrix is transformed into a full one.® Consequently, all the elements of the matrix
must be stored. Moreover, direct methods are typically global and sequential algorithms, which

makes them unsuitable models for neurally-based visual processes.

o

On the other hand, the class of iterative methods readily gives rise to biologically-feasible
algorithms. Examples in this class are relazetion methods such as Jacobt relazation, Gauss-Setdel
relazation and successive overrelezation, as well as gradient methods such as gradient descent and
the conjugate gradient method. Iterative methods exploit the sparseness of the matrix inasmuch
as they do not modify its elements from one iteration to the next. Therefore, only the relatively
few nonzero matrix elements need be stored. Owing to the sparseness and banded structure
of the matrix, iterative methods require local-support computations only, and in certain forms
such as Jacobi relaxation and gradient methods the computations can be performed in parallel.
Because iterative methods in general and relaxation in particular are fundamental to the ensuing
discussion, an introduction to some of the relevant mathematics of this class of techniques is

included in Appendix B for convenience.

The algorithms we are contemplating are to be executed by computational mechanisms in

the form of networks of many simple processors, such as neurons, which are directly connected

; only to near neighbors. Due to the myopic nature of the processors, global interactions can take
: place only indirectly, through the iterative process, by an incremental propagation of information.

Normally, the network is large and since this is reflected in the size of the linear system, we

: j anticipate that a vast number of iterations will be required for any relaxation or gradient method
to converge. Typically, the number of iterations will be on the order of N™, where IV is the
T dimension of the matrix, and m is the highest order of partial derivatives present in the energy
inner product, which in our case is two. Grimson’s [1981a] formulation of surface interpolation as
a problem in mathematical programming naturally led him to the choice of a gradient method
for its solution and, not unexpectedly, disappointingly slow convergence rates were observed due
to the large size of the images typically encountered.

1‘ SFor a positive definite symmetric matrix, the inverse matrizx remains banded, but is no longer sparse
' within the band. The inverse matrix is the discrete Green’s function for our problem, which in general
bas global support over 1.
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Recently, a class of iterative techniques called multi-grid methods have seen increased
application to the numerical solution of boundary value problems for which they achieve
convergence in essentially order N number of operations [Brandt, 1977a, 1977b; Brandt and Dinar,
1979]. This spectacular improvement results from the use of a hierarchy of grids to increase the
efficiency of the global propagation of information. Multi-grid algorithms feature both intra-grid
and inter-grid processes. Typically, the intra-grid processes are relaxation iterations, while the
inter-grid processes are local polynomial interpolations. Therefore the multi-grid algorithms are,
in principle, biologically feasible. A final issue which speaks in favor of adopting them to vision
is the intrinsic multi-level structure of the earliest stages of the visual system itself and, as we
argued in the introduction, the apparent need to maintain this structure at least to the level of
the 24-D sketch.

We therefore advocate a hierarchical approach to surface reconstruction, which we will
develop initially in the context of the Marr-Poggio stereo theory whose clear multi-level structure
provides ample motivation. At the heart of the proposed scheme lies a multi-grid algorithm
adapted to the fast solution of a hierarchy of discrete thin plate surface approximation problems.
In the following sections, we present the underlying theory and build up a detailed description of

the multi-level algorithm.

5.2. The Multi-Level Equations

As we have stated, the stereo module generates sparse depth information over a range of
resolutions. The information at any particular scale can be thought of as a set of constrainta
which, at that level, define a well-posed, discrete surface approximation problem. It is natural
then to view our surface reconstruction problem as the solution of a hierarchy of such discrete
problems. The discretizations are performed in the usual way by introducing a sequence of finite
element spaces S*1,...,S"t over the rectangular domain {3, where L is the number of levels
and A; > --- > hp are the fundamental lengths of the elements at each level. In the familiar
notation, we will denote the functions which are members of the finite element spaces by (italic
face) v* € $**, and the parameters (i.e., the nodal displacements) which define these functions
according to (A.11) by (bold face) vectors v** € RN"* where N** is the dimension of S**. The
hierarchy of problems is then given by the sequence of L linear systems (see equation (4.8)) of

the form
Al = 1< k<L, (1)

whose dliscrete solutions u"* € RV™ for 1 < k < L define a sequence of functions u** ¢ S* which

constitute the hierarchy of full surface representations.

Asthough, in theory, there need be no restriction in the relationship of element sizes from
one level to the next, a number of practical implementation-related issues point towards the

subdivision of each square element domain on a given level $"* into four identical element domains
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on the next finer level S"*+!; that is, we choose ki = 2h;;. Consequently, $"* wi!l be a

subspace of $"*+1, and the implementation of the inter-level processes is simplified substantially.

Moreover, the 2:1 ratio is a natural one in view of the spatial-frequency bandpass channels in early

"3 vision whose center frequencies are spaced approximatel-y‘ ong octave apart, the spatial ‘resadution
of a channel being about twice that of the immediately coarser one [Wilson and Giese, 1979)].

\ Finally, the choice can be shown to te near optimal in terms of the multi-grid convergence rate
[Brandt, 1977a, pg. 353]. Since the triangulation of {} associated with our simple elements is a

uniform grid of square element domains, the 2:1 ratio implies that in scanning along tke z or

y directions, every second node of a grid coincides with a node of the next coarser grid and,

furthermore, that the number of nodes is related from one level to the next by Nh»—1 — J Nk,
Therefore, the total amount of space required to maintain all of the representations is bounded
by Nh(1+ 4 +&+-)= $§Nbe; ie., it is only a small fraction more than that required for
the finest grid.

T
.

One can think of several possibilities for exploiting the hierarchy of discrete problems to
increase the convergence rate of the iterative process. Perhaps the first idea that comes to mind
is to solve the system at the coarsest level, which can be done very quickly, and use the solution
as an initial approximation in the iterative solution of the next finer level, proceeding in this
{ manner to the finest level. This is an effective acceleration strategy which is almost as old as the
idea of relaxation itself [Southwell, 1946]. Although it is suitable for obtaining a single accurate
solution at the finest level, it cannot generate solutions having the finest-level accuracy over the

hierarchy of coarser levels, since the approximation error increases as the elements become larger.

This is undesirable from the point of view of our surface reconstruction problem. Here we require
that the accuracy of the finest-resolution surface be maintained throughout the coarser surface
descriptions. This will guarantee that the shape of the surface will be consistent over the hierarchy

of representations.

\ The stipulation that accuracy be maintained is further motivated by psychophysical studies
into the phenomenon of visual hyperacuity (see, e.g., [Westheimer, 1977; Westheimer and McKee,
1975, 1977]). Related computational studies indicate that, in principle, sharp, well-defined intensity

edges can be localized to high (sub-receptor separation) accuracies from the V2G convolution
values through a process of spatiotemporal interpolation [Barlow, 1979; Marr et al., 1980; Hildreth, :
1980; Crick et al.,, 1981; Fahle and Poggio, 1981]. Consequently, it seems that although the depth '

constraints arising from the larger channels in stereopsis represent coarser spatial samplings of the

e

scene, excluding erroneous matches, the samples may provide highly accurate range information.

The only way that consistent accuracy can be maintained throughout the hierarchy of full
surface representations is to allow the coarser levels access to the high-resolution information in
{ the finer levels. The multi-grid algorithm provides such a flow. The hierarcny of levels cooperate,

through a bi-directional flow of information, to simultaneously generate multiple, equally-accurate

|
E
i
|
;

31




TERZOPOULOS MULTI-LEVEL SURFACE RECONSTRUCTION

surface representations, and do so with much less computational effort than would be expended

in solving the finest-level system in isolation. To see how this is accomplished, we will initially
consider only two levels, a fine one and a coarse one, associated with the finite element spaces S*
and S?" respectively. Suppose that by some iterative process we obtain an approximate solution
v2* to the coarse level system A2*u?* — f2% which is then interpolated” to the fine level where
it becomes the initial approximation v*:

h 2h
I . 2
v 2h=th M ( )

The mapping I35, : §2" i+ S* denotes interpolation from the coarse space to the fine space.

Normally, v will require substantial improvement.

Let u* be the solution to the fine level system AMu* = f*. Then we can define the error

k —vh. Clearly, if " could be computed, it could be

vector in a given approximation v” by e* = u
added as a correction to v", thereby giving us the desired solution. But because the computation
of e" would take about as much effort as computing u” itself, doing so would not be helpful.
On the other hand, if we could somehow approximate the error function ¢* by a function 2" in
the coaise space S, such an approximation can be obtained quickly due to the fact that the
coarse space has only one quarter the dimensionality of the fine space. Such an approximation is
generally not possible, however, because ¢”, having been generated by an interpolation from the
coarse grid solution, is certain to have large fluctuations with wavelengths less than 1h. These
high-frequency Fourier components could not be approximated on the coarse grid because there
they would alias as lower-frequency components. Before a meaningful approximation to the error
can be obtained on the coarse grid, the high-frequency components must be eliminated; that is

h

to say, the error function e” must be smoothed.

Since smoothing is inherently a local operation, it should not be surprising that local iterative
methods, inefficient as they are in obtaining solutions, are very efficient at smoothing the error
functior. In particular, although relaxation generally requires very many iterations to eliminate
the global, low-frequency components of the error, it only takes a few iterations to eliminate
the local, high-frequency components. This behavior can be predicted mathematically by a local
Fourier analysis of the given iterative method [Brandt, 1977a]. The analysis involves a local Fourier
expansion of the error function followed by an examination of the effect that a single iteration
has on the amplitudes of each component. An important quantity which is obtained through this
analysis is the smoothing factor i of the iterative scheme, which is defined as the worst (i.e.,
the largest) amplification of a high-frequency component of the error from one iteration to the
next. As an example, in Appendix C we carry out a local Fourier analysis of the appropriate

Gauss-Seidel scheme for our discrete problem, and show that & == 0.8. This implies that, for our

problem, ten Gauss-Seidel iterations on the fine grid are sufficient to reduce the high-frequency

7 Lagrange snterpolation of a suitable order may be used.
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components of ¢" by approximately an order of magnitude. A more effective weighted Jacobi
relaxation scheme, which is also suitable for our problem and gives a & = 0.549, is described in i

[Brandt, 1977a, pg. 342].% ]

Once the error has been smoothed, it may be inexpensively approximated on the coarse i

grid. The equation for e" on the fine grid is the residual equation
Aher =", where  r* = f* — A*v? (3)

is called the residual of the approximation v*. The approximation to this equation on the coarser
grid is

Aﬁhe2h — 1 l'h,
h=22h

where the mapping Inuan:S" — §2" is an “interpolation” from the fine space to the coarse
space. Because §** C §*, the mapping can be a simple injection or some local averaging of node
displacements from the fine grid to the coarse. After e2" is computed, a better approximation to
v* may be obtained by interpolating the coarse grid correction back to the fine grid; that is, by

making the replacement:

vPevhi4 1 e
2h=2h

2h

This correction practically annihilates the smooth part of the error e*.

Brandt [1977a, 1977b} calls the foregoing scheme a correction scheme in view of the fact
that the function computed on the coarse grid is the error function; that is, the correction to
the fine grid approximation. The correction scheme is easy to implement, but it is unsuitable for
our surface reconstruction problem because instead of an error function e*, we require that the
function computed in the coarse space be a function u2" which represents explicitly the distances
to surfaces in the scene. This may be accomplished by a reformulation of the correction scheme

equations which converts them into those of the related full approzimation scheme.
First, we rewrite (3) in the equivalent form
AR(v® 4 e") — APvE = ph,
which may be approximated by the corresponding coarse-grid equation

AT R4 e —A( 1 V)= 1 r.
hewa2h h=a2h h=s2h

Defining a new function u?* in S3* by the nodal displacement vector u?® = Ipuan v" + €**, we

obtain the coarse level system

*Brandt proposes this scheme for :olving;bihnrmonic boundary value problems. The scheme is also
appropriate for our surface approzimation problem which is in essence a biharmonic problem in view of
the associated Euler-Lagrange equation.
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M3k __ 3k ‘ 2h _ a2 A A :
Ayt = g where g A (h=~12hv )+hJZhl' (4) 3

: It is natural to interpret (4) as the original coarse-level system A2"u?* = f2* but with a right-hand
side which has been modified using information from the fine grid so as to maintain the fine-grid 3
accuracy in the coarse-grid function u**. Thus, g** is an estimate of the local truncation error on
the coarse level relative to the fine level (see [Brandt, 1977b, pg. 284]).

Once the solution u?" of equation (4) is available, we can write e2* = u2" —I,_,,, v* as the
desired coarse-grid approximation to the fine-grid error, and the approximation on the fine level ‘
can be corrected by the replacement

h h I (u2h — Ry,
? vy +2h-=.h(“ h=£2hv ) (5)

Note that since I3p—n In=2n v* 7% v* the replacements given by (2) and (5) are not cquivalent.

2k

Since u®® is a low-frequency correction, the replacement indicated by (2) would destroy the

high-frequency components of v* whereas the replacement indicated by (5) preserves them.

How do we solve the coarse-grid cquation (4)? The obvious answer is: by relaxation iterations
on the coarse grid, and with the help of corrections obtained from still coarser grids. Thus, in a %

straightforward recursive fashion, we can extend the above two-level equations to any number of

levels. In view of (4) and the fact that the residual for the level k equations is given by
=g — APyl (6)
the multi-level equations for L levels are given by
APrghe —ghe  for 1 < k< L, M
where
gt =1, and

‘: g’"‘ = Ah"( I uhh+l)+ I (ghn+x _Ahh+luhk+l), for 0< k<L 1. (8)

ha+1mhy hyyy=phy

; Note that the original, right-band side f** of the k'P level problem occurs only on the finest
: 'l level L. The right-hand sides of the coarser levels have been modified in order that the finest

. , level accuracy be properly maintained throughout; that is to say, in order for the solutions u*

i to coincide: w1 = Iy pen, U = -+ = Iy, o, - "Iy, =n,_, U"*. Analogously to the two-grid case,
we can interpret the difference of the original and the corrected right-hand sides, f"* — g"*, as

s ‘ an estitaate of the local truncation error of level k relative to the finest level.

5.3. Multi-Level Surtace Reconstruction Algorithms

‘ We have motivated the multi-level approach to surface reconstruction and described in a
o quantitative manner its basic components — the intra-level relaxation processes, and the inter-level

interpolation processes. It now remains to show how to bring the components together into an
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algorithm for solving the multi-level equations (7) and (8). Several schemes have been proposed
[Brandt, 1977a, 1977b; Brandt and Dinar, 1979}. We will describe one which is appropriate in terms
of our surface approximation problem.® Before defining the full multi-level surface reconstruction

algorithm, we will define its main procedure, the multi-level surface reconsiruction cycle.

The multi-level surface reconstruction cycle starts at the (currently) finest level !, making
several cycles to the coarser levels k == | —1,1—2,...,1, until a hierarchy of surface representations
which are as accurate as is possible in the §%' space is obtained. Let ¢, denote a tolerance for
solving the equations on level k. £ and n are switching parameters which are given appropriate

values below.

Algorithm 1 — Multi-Level Surface Reconstruction Cyele
Step 1 — initialize the finest level /.
Set the right hand side of the level | problem A*uM = g™ to the original right hand

side: g" « f*. Introduce the initial approximation v* « v} Set ¢ « 0,'0 and k « I.

Step 2 — start a new operation level k.

Set €2l oo

Step 3 — perform a relaxation iteration.
Perform a relaxation iteration for the equation A**u** = g"* and concurrently compute

some norm of the residual given by (6), ex « |[F"*||.

Step 4 — test the convergence and its rate.

If e < €, then convergence has been obtained at the current operation level; go
to Step 6. If k =1, go to Step 3. If e, < ncgld then the convergence rate is still
satisfactory, set egld
go to Step 5.

+— ¢, and go to Step 3; otherwise the convergence rate is slow so

Step 5 — transfer to coarser level.
Introduce as the first coarse-level approximation the function vh*—! defined by the

nodal displacements

LD IDEEES E
hy=shp_y

Set the right-hand side of the coarser level problem A —1yht—1 = ghs—1 to

shh—l — AP —igha—; + 1 (‘hu _ Ah‘vh‘)
hpsthy

°Brandt refers to it as the accommodative, full multi-grid, full approzimation scheme algorithm {Brandt and
Dinar, 1979].

19This value for ¢ is temporary. A realistic value is introduced in Step 5.
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(in view of equation (8)). Set the tolerance €x..; « £ex. Concurrently with the
computation of g'*—:, compute the norm of the local truncation error f'»—1 — g'a—1
using the same norm as in Step 3. If k = set ¢ «- }||f*—1 — gk +||.!"" Finally, set
k «- k —1 and go to Step 2.

Step 68 — use converged solution u™* to correct finer level.

If & < l, make the correction (in view of equation (5))

R L S N (T T R it
hy=2hx., hieyr=phy

set kK +— k + 1 and go to Step 2. Otherwise, if k == | end.

The relaxation operation in Step 3 can, in principle, be based on any one of the jterative
methods described in Appendix B, but is usually a simple Jacobi or Gauss-Seidel iteration. For
our surface reconstruction problem, in view of equation (4.9) and the discussion in Appendix B,

the Jacobi relaxation iteration in the interior of {1 is given by

{t+1 1 8 t) (+) (e)
vl.)+ = m[h‘z( t—1,5 + V:(+1,J -+ V. g—1 "t Vu,]+l)
2 . . .
- ;5("'5—)1,,..1 + v'+‘ 1t VE-)I-J'H + V”l,:ﬂ-l) (9)
1 t (2) t
_;5( f-)~2..7 +Vijae, t VS ;—2 +v ,J+2) + ﬂg..JJ;

while the Gauss-Seidel relaxation iteration is given by

1) 1 B ( (41 , ) (1) 4 o)
Vi - ;2,'9‘ _+_ﬂ[}72-(vl—-l,] Vid,, +-v Vii—1 +v, .j+l)
2 ( (41 41 '
h2(7f~: ;——1 -+ V$+1.i—1 +V.—-1 241 + vf-z-l.1+l) (10)
1 1 +1
—hQ( St_-+2,?, +Vsll_2_) -+ V(‘]_; +V, ,+2) + ﬁg..j],

where we have suppressed the superscripts h, indicating the level, and have instead introduced the
bracketed superscripts which indicate the iteration nuinber. Analogous formulas for the boundary
points can be derived from the computational molecules associated with the boundary. The norm
computed in Steps 3 and 5 can be the discrete Ly or L, norm. In the case of Gauss-Seidel
relaxation, it is quicker to compute the dynamic norm, as the iteration progresses, rather than

the static norm (see, e.g. [Brandt, 1977b, pg. 286]).

Ar important feature of the multi-level algorithm is that the local Fourier analysis, in
addition to providing a prediction of the convergence rate, enables one to predict ncar-optimal
values for the switching parameters. It turns out that the actual values assigned to the switching

| parameters are not critical, and that good values are £ = 0.2 and n = [, where & is the smoothing

' '!The constant } is the value of 2 7 (see [Brandt, '1979 pg. 65]), where p = 2 is the approximation
order of the second pariml derivatives of the energy inner product that is achieved by our quadratic
element.
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factor of the relaxation mnethod used in Step 3 of the algorithm (sce [Brandt, 1977b, pg. 290)).
The order of the interpolation operators is determined by the problem itself; i.c. the order of
derivatives in the energy inner product. For the coarse-to-fine interpolation I4,.,1,,, in Step
6, the natural second-degree interpolation of the clement polynomial p” may be used. On the
other hand, simple injections perform well for the fine-to-coarse transfers I, -, _, in Step 5 and

Ih,H_,:qh,, in Step 6.

Having defined the multi-level cycle which starts at the finest level [ and cycles through the
coarscr levels, we will emnploy it as a procedure within a more general, full multi-level surface
reconstruction algorithm. We now think of the level ! of the cycling algorithm as the currently
finest level; ie., the finest level for which an approximate solution has already been computed by
the multi-level cycle. The full algorithm works in the opposite direction, the currently finest level

progressing from’ the coarsest level | == 1, to the finest level | = L.

Algorithm 2 — Full, Multi-Level Surface Reconstruction Algorithm
Step 1 — solve the coarsest-grid equation.

hy

Compute by relaxation an approximate solution u”' to the coarsest-grid equaticn

AMaht =1 Set |« 1.

Step 2 — set a new finest level {.
If { = L stop. Otherwise increment the currently finest level ! « { + 1, and set the first
approximation on the new level to be the function vﬁ‘ defined by nodal displacements

hy
vp' = 1h1—1=’h4 uhi-,

Step 3 — perform a multi-level cycle.

Invoke Algorithm 1 and when it ends, go to Step 2.

Note that the solution in Step 1 will be performed quickly because S"' has relatively few
dimensions. In Step 3, each time Algorithm 1 terminates at level [, we have obtained a hierarchy of
| representations whose accuracy is the best possible on level I. The currently finest approximation
is then interpolated to the next finer level until the finest level L is reached. Brandt recommends
a somewhat higher-order interpolation for the initial interpolation I, _, s, in Step 2. Third order
Lagrangian interpolation seems adequate for our surface interpolation problem, as we will see

from the demonstrations in the next section.

Algorithm 1 is accommodative in that it makes internal checks, based on the computation
of norms, to determine when to switch levels. For many types of problems, accommodative
algorithms behave in a fairly fixed manner, performing a similar number of iterations on each
level before switching. It is then possible to avoid computing the dynamic-residual norm in Step
3 of Algorithm 1, and to preassign a fixed flow. A switch to the coarser level S"*—' is made after
n. iterations have been performed at level S"*. Analogously, a switch to tae finer level Sha+: jg

made after n; iterations have been performed on level Sh* since the last return from the finer
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level. n. depends or the smoothing factor, a good choice being n. = log.1/log i. Sometimes ny
varies from level to level. For a more extensive discussion see [Brandt, 1979, pg. 68-59]. Fired
algorithims are to be preferred for parallel implementations in general, and from a biological point

of view in particular.

In order to evaluate the performance of the multi-level surface reconstruction algorithm, we
define a unit of computation called a work unit which is the amount of computation required to
pérform one relaxation iteration on the finest level L. It is roughly equal to wN"*, where w is
the number of operations required to compute the residual at each node'? and N*t is the number
of nodes at the finest level. Since there are one quarter as many nodes on level k — 1 as there
are on level k, only 1/4' work unit is required to perform a relaxation iteration on leve: L —s.
The prcportionate amount of computation done on coarser grids thus diminishes very rapidly.
Although, for accommodative algorithms, it is diflicult to predict the total number of operations
consumed by the inter-level processes, it normally turns out to be considerably less than the total

inter-level process computation, and is therefore usually ignored (see [Brandt, 1977a, section 6.2}).

A final issue that we have not yet considered in quantitative terms is the choice of appropriate
values for the (spring) constant 8. In the mathematical and, in particular, in the finite element
literature, the constraint term £5(v) of equation (2.2) is known as a penalty function (see, e.g.,
[Courant, 1943}, {Babuska, 1973], {Strang and Fix, 1973], [Zienkiewicz, 1974]). The incorporation
of penalty functions into variational principles is a standard way of approximately satisfying
essentia’ boundary conditions by converting them into appropriate natural boundary -onditions
which riay be handled straightforwardly by the finite element method. Penalty functions are
particularly useful when the essential boundary conditions in question are complicated, or when
only their approximate satisfaction is desired, as in the case of visual surface approximation. An
optimal value for 8 can be derived through the following comsiderations. Let w be the solution
to our surface approximation problem, which interpolates the known depth points. As usual,
u € ¥2(11) denotes the exact solution to the variational principle (2.2), including the penalty term
&s, and u® € §* denotes the finite element approximation to u. Then, there will be a balance
between the error w — u which measures how closely the surface fits the constraints and the error
u — u*, due to minimizing over a finite element subspace [Strang and Fix, 1973, pp. 132-133].
Analyzing this balance, Babuska {1973] determined that the optimal value for § is dependent on h
and is given by 8, = k%, where ~ is a constant and k is the degree of the complete polynomial
contained in S*. Therefore, for our quadratic faite elements, k = 2, and the best valu= for 8 at

level ; of the multi-level aigorithm is 8y, == 7/h?.

5.4. Examples of Multi-Level Surface Reconstruction

Fizure 7, is a schematic diagram of the structure of the multi-level surface reconstruction

24 is determined by the specific relaxation scheme used, but due to the size of the suprort of the
central computational molecule, it is approximately equal to 13.
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Figure 7. The structure of the multi-level surface reconstruction algorithm.

0!49:0.

A DLEER

RY RS N A SRAFNL LT

NN
O 205085,

o '.‘...-f.\".:“ .
T RN Y S
N N&! A SR
“_:!.}\0"0% o ‘\:}“ ol ulL

PN e/
I LTINS R RETRER

EXE
g He20es ‘

coarse medium

T e 1y
Ll

Mo AN A A _ ahg b
[ Aty +A.-!u.(‘ Abwh)

fine
to
coarse

relaxation

coarse
to
fine

™o M-‘nt-(“‘ - 1 ¥™)

’ v

coarse

AR
{

relaxation

WM 1 ¥M Y
Aavdy

Ay o A Y ¥
g Al g 1B —AlYR)

fine
to
coarse

relaxation

coarse
to
fine

39




TERZOPOULOS MULTI-LEVEL SURFACE RECONSTRUCTION

algorithm, showing three levels of resolution. The diagram depicts the relaxation processes operating
at each level, as well as the fine-to-coarse and coarse-to-fine processes which transfer information
between levels. The algorithm transforms a hierarchy of sparse surface depth representations, such
as might be provided through the independent stereo bandpass channels, into a hierarchy of full
surface representations which constitute the full 24-D sketch. The constraints for the surfaces
shown in the figure are random samples from a surface which varies sinusoidally in depth. It is
evident that the multiple full representations output by the algorithm, describe the sinusoidal
surface over a range of scales and that the accuracy of the finest representation is maintained in

the coarser ones.

In this section, a number of examples of multi-level surface reconstruction are presented.
We will consider the reconstruction of surfaces from artificially-generated constraints, as well
as constraints generated from natural images by an implementation of the Marr-Poggio stereo
theory. The performance of the multi-level algorithm is compared to that of single-level iterative
algorithms. In the examples presented, the algorithm was started from identically zero initial

approximations on all the levels.

In the first sequence of figures, we present synthetic examples of surface reconstructions with
the purpose of illustrating the performance of the algorithm in reconstructing quadric surfaces
having zero, positive, and negative Gaussian curvatures. Constraints on each level were synthesized
by sampling depth along arcs on the surface. The examples, involved four levels whose grids had
dimensions N = N =17, N% = N}» = 33, N> = N}» = 65, and N}« = N}+ = 129,
with corresponding gnd spacings h; == 0.8, hy = 0.4, hy = 0.2, and hy = 0.1. The relaxation
method employed was the Gauss-Seidel method of equation (5.10), and a value of 2.0 vias chosen

for v, giving Bn, = 2.0/hZ.

Figure 8 shows depth constraints whose values are consistent with a cylindrical surface viewed
at four resolutions. The constraints lie along arcs of greatest curvature. Figure 9 illustrates the
hierarchy of full surface descriptions reconstructed by the four-level algorithm. Since the constraints
on all the levels sample the same ideal cylindrical surface, the full surface representations coincide
to a high degree of accuracy. Convergence was obtained after 12.0 work units. For comparison
purposes, the finest level problem was isolated from the coarser levels and the same Gauss-Seidel
relaxation algorithm was applied to it. Figure 10 shows the (single-level) approximation obtained
after 800 work units (i.e., iterations). 1t is clear that we are still very far from convergence.
Although the approximation is generally smooth, it has large low-frequency error compcnents and
the approximate surface lies far below its final value between constraints which are separated by
fairly large distances. As predicted by the local Fourier analysis, it is precisely such low-frequency
error ccmponents that local iterative algorithms bave difficulty liquidating. In fact, the following
characteristic pheuomenon was observed. During the initial iterations, the corrections made to

the approximation decreased rapidly, so that by the 800D iteration they are minute, even though
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Figure 8. Constraints at four scales consistent with a éylindrical surface.




1

TERZOPOUL.OS MULTI-LEVEL SURFACE RECONSTRUCTION

Figure 9. Hierarchy of full surface deseriptions geuerated by the multi-level algorithm.
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Figure 10. Single lcvel approximation after 800 work unit;_. 7
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the error norm is still very large. Since there are 17,361 nodes in the grid, it may take on the
order of (17,361)? work units to obtain the solution without the help of the coarser levels. Thus,

the multi-level algorithm is vastly superior when the constraints are far apart.

Figures 11 and 12 show a synthetic example of the reconstruction of a hemispherical surface
from constraints which form latitudinal circles. The hierarchy of full surface representations was
obtained after 4.25 work units. Figures 13 and 14 illustrate an analogous example involving
a hyperbolic paraboloid (saddle surface), where the constraints form parallel parabolic arcs.
Convergence was achieved after only 2.5 work units (only a single iteration was performed on
the finest level). Single level algorithms applied to the above surfaces exhibited poor convergence

properties similar to the case of the cylinder.

The above examples simulate a visual situation where the surface in the scene has reflectance
changes in the form of widely-spaced rulings but is otherwise free of intensity changes. This is an
unlikely situation in view of the fact that the visual world is full of textures, which often arise from
surface material and pigment changes. Such textures generally result in relatively densely-spaced
zero-crossings forming, to a certain extent, random patterns. In turn, these zero-crossings give rise
to constraints having similar properties. Figure 15 illustrates a simulation of this situation using
a surface varying sinusoidally in depth. A three-level surface reconstruction algorithm was used.
The constraints input on each level were 30%-density randomly-located samples of the surface

depth. In addition, to simulate the effects of possible inaccuracies in the constraint values, each
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sistent with a hemispherical surface.
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Figure 11, Constraints at four scales con
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Figure 12. Hicrarchy of full surface descriptions generated by the :ﬁulti-l_evcl algorithm.
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Figure 13. Constraints at four scales consistent with a hyperbolic paraboloid.
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Figure 14. Hicrarchy of full surface descriptions generated by the n{ul(i-lcvcl alguriuuu.r
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Figure 15. Surface reconstruction from randomly-placed depth constrainta.
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Figure 16. Single level approximation alter 19 work units.

sample was corrupted by zero-mean, uniformly-distributed, additive noise whose magnitude was
one tenth the sample value. The algorithm generated full surface representation hierarchy in 18.75
work units. Evidently our spring model for the influence of the constraints, with B, = 2/hf,
is adequate for this case in that the additive noise has not adversely affected the quality of the
reconstructed surfaces. The results after 19 work units (iterations) with single-level Gauss-Seidel
relaxation on the isolated finest grid are shown in Figure 16 for comparison. It is evident that the
approximation is still far from the true solution. In fact, a total of 71 work units was required
to reduce the error norm to the magnitude obtained after 18.75 work units by the three-level
algorithm. The saving in computation is less in this example than in the ones above becatse,
first, only three levels were used and, second, the density of the constraints is greater. In general,
the greater the density of the known depth values, the tighter the surface is constrained, and
the convergence is expected to be faster. Another way to think of this is that as the average
distance between constraints decreases, the cfficiency of relaxation in liquidating the low-frequency
Fourier components in the error increases and, therefore, the relative advantage of the multi-level

algorithm is correspondingly diminished.

The next examples illustrate the performance of the multi-level algorithm using disparity
constraints generated by Grimson's implementation of the Marr-Poggio stereo algorithm (Grimson,
1981a, 1981b], which includes some of the modifications suggested by Mayhew and Frisby

(1980, 1981] for exploiting disparity gradient constraints along zero-crossing contours. The stereo
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Fijgure 17. Sterco images on which the multi-level reconst:aation algunitin wa Gwred.
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Figure 19. Approximation ou the isolated finest grid after 950 iterations.

algorithm was run on three stereo pairs of images, shown in Figure 17, which were digitized
to 320 X 320 pixels in 256 grey levels. The pairs from top to bottom are A) a synthesized
random dot stereogram of a “wedding cake” of stacked planes, B) natural images of a portion
of a coffee jar sprayed with “random dot” paint, and C) an aerial view of a set of buildings
on the University of British Columbia campus. A three-channel version of the stereo algorithm
was used. The resulting sparse disparity representations were rcduced spatially by a factor of
two, and input to a three-level surface reconstruction algorithm whose grids had dimensions
N!t = N}t = 41, N}* = N}» = 81, N}* = N} = 161, with corresponding gri® spacings
hy = 04, hg = 0.2, and h; = 0.1. The surface reconstructions in the examples is based on the
"'. ‘ raw disparities whose relation to depth is through a nonlinear transformation. Consequently the

= -i shapes of the reconstructed surfaces are distorted to a certain extent.

; The sparse disparity constraints provided by the stereo algorithm and the hierarchy of full
surface representations generated by the three-level reconstruction algorithm for the “wedding
cake” stereogram are shown in Figure 18. The value 4 = 0.5 was used in the algorithm, and the
representations shown were generated after 16.75 work units. The three-dimensional structure of
the planar surfaces is clearly evident at the three resolutions. The results can be compared to

‘ Figure 19 which shows the approximation obtained by a single-grid algorithm on the finest grid,

after more than 900 work units.

Figure 20 illustra. s the sparse constraints and the full surface representations obtained
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Figure 18. Disparity constraints aud full surface representations ol‘i‘V‘wcdding cake”.
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Figure 20. Disparity constraints and full surface representations of the colfi-e jar.
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Figure 21. Disparity constraints and surfaces reconstructed from the aerial view.
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(with 4 = 0.1) from the images of the coffee jar.'® The reconstruction required 16.0 work units.
Finally, Figure 21 shows the sparse constraints and the reconstruction obtained from the aerial
view (with 4 = 8.0), after 21.875 work units. The representations are displayed as grey level

images, in which darkness is proportional to disparity.

It should be noted from the above examples that the multi-level surface reconstruction
algorithm, in its present form, attempts to reconstruct a single surface over the entire grid. As
a consequence, serious problems arise near sharp changes in depth such as those due to partial
occlusions of surfaces in the scene. The reconstructed surface gives the undesirable impression
of a tablecloth thrown over a 3-D model of the scene. The source of this difficulty is discussed

further in the concluding chapter, where possible ways of overcoming it are suggested.

6. GENERALIZED INTERPOLATION PROBLEMS IN VISION

The key to the solution of many problems in early vision is the imposition of constraints based
upon assumptions about the visual world which are almost always true. A common assumption is
that matter is cohesive; i.e, that surfaces are continuous over most of the scene. This assumption
is usually introduced in the form of smoothness constrasnts, such as those characterizing the
most consistent surface in visual surface reconstruction. From our study of this problem, we
have seen that it is appropriate to formulate smoothness constraints within variational principles.
In this chapter, we study a general‘ class of variational principles, and we propose that the
functionals characterizing these variational principles are appropriate semi-norms for formulating
smoothness constraints because they possess several invariance properties which become important
in applications to early vision. In order to simplify the discussion, the analysis will be in terms of
interpolatory constraints and domains of infinite extent. Our visual surface reconstruction problem
will be shown to be a special case of this generalized, optimal interpolation problem which is a

natural generalization of the familiar curve-fitting problem involving splines.

The classical spline problem involves the minimization of the quadratic functional

o= [

under the interpolatory constraints v(z,) =c, 1 < ¢ < N, with N. > m > 1, where the z,

d™v(z)|?

dz™

(1)

are given distinct points in [a, b] and the c, are given real scalars. The natural setting for this
problem is a vector space V formed by the class of functions whose (distributional} derivatives
up to order m are in Ly(a,b); that is, the class of functions which are elements of the Sobolev
space of order m over [a,b], ¥™([a,b]), defined in Section A.l. ||,, is a semi-norm which is

derived from a semi-inner product and, equipped with it, V' becomes a sems-Hilbert space. The

In this example, the constraints for the coarser channels were generated by averaging down the
finest-channel disparities.
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conditions imposed on the constraints ensure the existence of a unique solution u € S, where §
is the convex subset of V whose elements interpolate the constraints. The characterization of u
as an odd-degree polynomial spline and various intrinsic propertics such as the minimum norm
and best approximation properties follow from the orthogonal projection theorem |Ahlberg et al.,

1967] (see also the proof of Theorem A.1).

Duchon (1976, 1977] and Meinguet [1979a, 1979b] describe an n-dimensional generalization
of the optimal, univariate spline interpolation problem. The generalized oplimal interpolation

problem involves the minimization of the functional |-|2,, where

A

sybom =1

amv(x)

2 $
dz,, .. az,m dx) ! (2)

and m and n aré given positive integ:rs. The generalized interpolation problem is naturally set
in a space V of functions which are elements of the Sobolev space ¥ ™(R").!* ||, is a semi-norm
whose null-space!s is the M = ("+',’:"l) dimensional space of all polynomials over R" of degree
less than or equal to m — 1: N = [I™~Y(R") [Schwarts, 1966, pg. 60]. Equipped with the

semi-inner product corresponding to |-|m, V becomes a scmi-Hilbert space.'f

Let the finite set of distinct constraints C = {(x,,¢) |1 < 5 < N, x, € R", ¢, € R} contain
a subset of M members such that there exists a unique element p € II"™~!(R") of the null space
of |-|,» which interpolates the M constraints in the subset; that is, such that there exists a unique
polynomial of degree m — 1 which satisfies the conditions p(x,) = ¢, for each 7 which indexes a

constraint of the above subset. We call such a subset an N -un--olvent subset.

We can pose the generalized optimal interpolation problem in the following way. Given a

set of constraints C which contain an N-unisolvent subset, find that element u € S such that
2 . 2
uls, = inf |v
[ul?, = inf |of2,

where once again S is the set of functions in V' which interpolate the constraints. The problem is
well-poscd because we are minimizing a semi-norm within a convex subset S of a semi-Hilbert space
and, furthermore, the existence of an N-unisolvent subset of constraints reduces the null-space of
the functional to at most a single nonzero element of S. A solution u is then guaranteed to exist

and be unique by the orthogonal projection theorem (see the proof of theorem A.1).}7

'*More precisely, the space V is the Beppo Lewi space [Duchon, 1977; Meinguet, 1979a, 1979b| of order
m over " defined by BL™(R") = {v | ”v C La forla] = m}, where a = (a;,...,an) is a “vector” of
positive .ntegers and [af == a; -+ +-- - aa; that is, it is the vector space of functions for which all the
partial derivatives of (total) order m are square integrable in R". The Beppo Levi spaces are rclated to
the Sobclev Spaces.

*The rull space of a semi-norm is the space of functions which the semi-norm maps to sero.

6According to the Sobolev inequality (see section A.1), when m > n/2, V is a semi-Hilbert function
space of continuous functions [Meinguet, 1979a, 1979bj.

"Moreuver, as a consequence of the Sobolev inequality given in Section A.l, u will be continuous if
m > nj/l.

56

o s




TERZOPOULOS MULTI-LEVEL SURFACE RECONSTRUCTION

Why is the class of semi-norms defined in (2) important in the context of vision? As was
argued recently by Brady and Horn [1981], many processes in early vision are approximately
isotropic and, therefore, it seems that operators which mode] these processes ought to be
rotationally symmetric. An example of such an operator is the V*G edge operator proposed for
computing the primal sketch [Marr and Hildreth, 1980; Hildreth, 1980]. The class of semi-norms
defined in (2) is of interest, since all its members |v|, are invariant under rotation and translation
transformations and, moreover, if a dJilation or contraction x ~+ Ax is applied to v, they are
multiplied by some power of |A| [Duchon, 1977, pg. 86]. Therefore, corresponding interpolation
methods will commute with any similarity transformations applied to the constraints. Clearly,
these properties are essential for interpolation processes which contribute to th2 generation of the
24-D sketch — the surfaces generated by surface reconstruction algorithms should not change
shape as the objects in the scene undergo translations or rotations parallel to the image plane, or

undergo displacements directly towards or away from the viewer.

For certain instances of m > 1 and n > 1, the general interpolation problem has familiar
physical interpretations which are most often encountered in a differential form through the
associated Euler-Lagrange equations. Consider first the one-dimensional case, n = 1. The
generalized interpolation problem then reduces to the common univariate spline problem of
equation (1). The particular value chosen for m determines the order of continuity of the optimal
curve — as m incrcases, the smoothness of the solutions increases. In particular, for the case
m = 1, |v|} = [, v2 dz measures the eneicy .0 a string of infinite extent, and leads to interpolants
having C° continuity. The associated Euler-x,agrang equation is u;; == 0. C! continuity may
be imposed on the interpolant by choosing m == 2. In this case, |[v]3 = [, v2, dz measures the
strain energy of bending in a thin beam of infinite extent, and the Euler-Lagrange equation is
Urzz; = 0. This class of univariate semi-norms secins to be appropriate for imposing continuity
constraints in the computation of optical flow along zero-crossing contours in the primal sketch

[E.C. Hildreth, personal communication].

Next consider the generalized interpolation problem in two dimensions. For n = 2, the

[ L5 () i)

m, once again, determining the degree of smoothness of the solution. For m = 1, vl =

semi-norms become

[ Jas (v2 + v2) dz dy measures the potential energy related to the statics of a membrane (rubber
sheet), and the associated Euler-Lagrange can be shown to be Laplace’s equation, Au = 0
[Courant and Hilbert, 1953, pg. 247]. A semi-norm of this order implicitly imposes the smoothness
constraints in algorithms proposed for computing lightness [Horn, 1974], shape from shading
[Ikeuchi and Horn, 1981], optical flow [Horn and Schunck, 1981}, photometric stereo [lkeuchi,
1981], etc. With m = 2, the smoothness of the interpolating surface is increased to C', the
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functional taking the form |v|} = [ [y (v2, + 2v%, + v} )dzdy. This will be recognized as
being our familiar functional representing the strain energy of the thin plate &, with Poisson
constant o = 0 (refer to equation (2.1)), whose Euler-Lagrange equation wus shown to be the
biharmonic equation, A2u = 0.!® As we have demonstrated, this order of sinoothness seems to
be most appropriate in visual surface reconstruction from, e.g., stereo information (refer also to

the discussion on the “quadratic variation” in [Grimson, 1981a}).

It becomes clear that we are dealing with a class of quadratic variational problems, the order
of whose Euler equations is determined by the degree of smoothness demanded of the solutions. For
m = 1 we obtain Laplace’s equation in n dimensions, for m = 2 the biharmonic equation, and so
on. In general, the Euler equation is an n-dimensional, linear, elliptic partial differential equation
of order 2m. Moreover, the general interpolation problems have straightforward formulations
as analogous approximation problems. For example, we can define appropriate constraint terms
analogous to the term s (equation (2.2)) for our surface approximation problem. Hence, there
exists a general framework in which to solve functional approximation problems, of the type
arising naturally when imposing smoothness constraints in early vision. Mecaningful, problems can
be formulated in any number of dimensions, and the degree of smoothness that the solutions
should possess can be specified @ priors. In this sense then, the Sobolev spaces can be viewed
as ingeaious formalizations of the notion of the “degree of smoothness” of admissible functions
and therefore are ideal domains in which to pose and solve these problems. By specifying the
(order of) the Sobolev space to which the solution should belong, we designate its position
in the wide spectrum from very smooth functions to singular distributions. Satisfaction of the
requirements, that the admissible space be a semi-Hilbert space and that the constraints include
an N-unisolvent subset will guarantee uniqueness. Needless to say, the theory of the finite element
method is applicable to either the interpolation or approximation formulations, and it will dictate

appropriate finite element discretization schemes for the associated variational principles.

When solving these variational principles using local, iterative algorithms such as the
ones described in this paper, smoothness constraints are imposed globally over retinocentric
representations by a process of constraint propagation. Inspired by the work of Walts [1975], a
class of algorithms called relazation lebeling algorithms were introduced as cooperative, constraint
propagation techniques in vision and image processing by Rosenfeld, Hummel, and Zucker [1976].
Although they have seen extensive use |Davis and Rosenfeld, 1981], their generality has made
them difficult to understand and, unlike the techniques and algorithms which are the subject of
this paper, the foundations of most relaxation labeling schemes are unfortunately poorly-developed

mathematically.

"*Ducton [1977] understandably rrfers to the solutions as fhin plate splines which also reflects the
fact that they are natural two-dimensional generalizations of commonly-used univariate splines, In the
engineering literature they are called surface splines [Harder and Desmarais, 1972].
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Recently, some theoretical understanding has been achieved by viewing relaxation algorithims
as techniques for solving constrained optimization problems (see, e.g., [Ullman, 1979b], [Faugeras
and Berthod, 1981)], [Hummel and Zucker, 1980}). From this new point of view, the relationships
between relaxation labeling techniques and iterative solution of finite element equations arising
from variational formulations become clearer — relaxation labeling schemes can be viewed as
iterative algorithms for solving optimal approximation problems over closed convex subsets (of
possible labelings) [Hummel and Zucker, 1980]. Necessary conditions for solutions (fixed points)
are then expressed as sets of variational inequalities [Ciarlet, 1978; Kinderlehrer and Stampacchia,
1980] and appropriate updating rules are natural generalizations of the classical local iterative
methods for solving large systems of linear [Young, 1971] or nonlinear [Ortega and Rhcinboldt,
1970] cquations. Moreover, if the compatibility functions among neighboring nodes are symmetric,
then there exist associated variational principles defining equivalent formulations as minimization
problems. Fortunately, it is possible to apply the finite element method to nonlinear problems
stemming from variational inequalities [Ciarlet, 1978]. In a certain sense then, finite elements can be
viewed as systematically-derived, physically-based compatibility relationships among neighboring
nodes. In view of the relationships between the two techniques, it is hoped that aspects of our
multi-level approach to solving the discrete finite element equatioﬁs for the surface reconstruction
problem may contribute to the theory of hierarchical relaxation labeling [Davis and Rosenfeld,
1981; Zucker, 1978; Zucker and Mohammed, 1979).

7. SUMMARY AND EXTENSIONS

Information about the shapes of visual surfaces that is inferred from the retinal images in
the early computational stages in vision is sparse. Nevertheless, onr perception is that of full
(piecewise) continuous surfaces. In this paper we have proposed a hierarchical approach to the
reconstruction of full surface representations, consistent with our perception of the visual world.
The foundations of our paradigm are embedded in a tight mathematical formalism which at
the same time seems sufficiently general to encompass many aspects of the complex information

processing task which is the generation of the full 24-D sketch.

Visual surface reconstruction was formulated as an optimal approximation problem having
an intuitively simple physical intetpretatibn — a thin flexible plate which is allowed to achieve an
energy-minimizing state of stable equilibrium under the influence of externally-imposed constraints.
This physical model led directly to an analysis in terms of the calculus of variations, and a
proof that the problem is well-posed in practice. The model also suggested a class of techniques
for optimally approximating the continuous solution by an equivalent discrete problem which is
amenable to computational solution. We chose to apply the finite element method for reasons
which include its generality, the availability of a tight theory governing its use, the simpie
discrete problem to which it gives rise, and its promise in vision as a systematic methodology
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for constructing local representations of surfaces.'” At each step, the underlying mathematical
theory assured us that, ultimately, our problem would have a unique solution that, ir principle,
could be computed by biologically-based mecchanisms. Our search for efficient algorithms and
our insights into the multi-level structure of the early processing stages in vision led us to a
multi-level algorithm which solves simultaneously a hierarchy of surface approximation problems
spanning a range of resolutions. The local-support processes comprising the algorithm include
iterative intra-level relaxation processes, and inter-level processes which serve to communicate
information between levels. The inter-level process include injections from fine grids to coarse
and polynomial interpolations from coarse grids to fine. Tests on stereo data verified that our
multi-level surface reconstruction algorithm mecets theoretical expectations of increased speed and,
moreover, generates a potentially useful hierarchy of consistent surface representations. Finally,
we examined our basic surface approximation problem in a more gencral seiting, and related it
to a broader class of optimal approximation problems based on semi-norms that commute with
similarity transformations applied to the constraints, a property which is important in the context

of vision.

Although we have laid down the foundations of our approach primarily in terms of stereopsis,
the methodology is by no means limited to the type of information produced by this particular
module. Indeed, our point of view speaks to the broader issue of how to combine the information
about :he shapes of visible surfaces gencrated by various vision modules into a self-consistent

whole. Several possibilities arise, some of which we will now consider briefly.

The simultaneous assimilation of information from different sources can be realized by
defining, more sophisticated penalty functions to replace &5 in Chapter 2. For example, in the case
of depth constraints from, say, stereo and motion, we can straightforwardly introduce additional
terms of the same form as &5 for each process. In terms of our plate model, we introduce two sets
of imaginary pins with attached springs, and allow the possibility of a constraint generated by
stereo to coincide with one provided by motion. Imperfections in the retinal images are likely to
affect the two processes in different ways, and moreover each will in its own way sporadically fall
prey to gross misinterpretations of the information in the primal sketches. Whatever the situation,
our physical model assumes an energy-minimizing state, and the resulting surface is an optimal
compromise in view of the constraints provided. In places where the information is consistent, the
final interpretation is reinforced. In places where there is a conflict, it is resolved by competition

with nearby constraints from both processes.

The influence of each constraint may be controlled, possibly dynamically by the processes
themselves, by assigning different values to each spring constant. For example, different confidence

values may be given to individual constraints generated by the sterco matcher, according to

'*On 1his Iatter point we should mention again that the finite element method allows us to bandle
domains of compiex shape, natural boundary conditions, and to set up nonuniform discretizations of the
domain — e.g., to vary the resolution across the domain.
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regional statistics of the rate of successfully matched zcro-crossings, which may hav: to be
computed anyway {Marr and Poggio, 1979; Grimson, 1981a, sections 2.5 and 3.4]. The extent of
the constraint’s influence on the surface may also be varied by extending our model to that of
an inhomogeneous plate, whose flexibility varies over the domain. Numerous possibilities exist for
defining weighting functions to apply to the strain energy density of the plate. All such proposals
for modifying the form of the functional must be first be shown to lead to well-posed problems,

by extensions of the analysis carried out in Chapters 3 and 4.

Another important issue is how to incorporate information other than 'neasurements of the
distance to the surface. An important class of processes generatc cues about visual surfaces in
the form of local orientation measurements. Examples in this class are the analysis of occluding
contours [Marr, 1977], as well as “shape-from” processes such as shape from shading [Horn, 1975),
contours and texture [Kender, 1980; Stevens, 1981; Witkin, 1981}, regular patterns [Kanade,
1981], etc. The finite element method provides a general way of handling orientation constraints
through the use of elements with degrees of freedom which include the first partial derivatives of
the surface. An appealing example is Adini's rectangle which was described in Section 4.1. Surface
representations based on this element would make explicit the information about the local slope
of surfaces, as well as their distance from the viewer. Discrete problems derived by applying this
element would correspond to a coupled system of two discrete Euler-Lagrange equations for the
plate, a fourth-order equation for the displacements at the nodes, and a second-order equation
for the slopes. On the other hand, we pay a price for this added capability — the dimension of
the finite element space is tripled, making the resulting discrete system even larger. Nevertheless,
the price may turn out to be worth paying in order to obtain useful surface representations
and, moreover, it may not be too high when massively parallel computational mechanisms are

contemplated.

A different way of handling orientation constraints which can be used with our simple
quadratic elements is, once again, by the use of appropriate penalty functions. In terms of our
ﬁ:odel, we can imagine the situation for a single constraint and a surface patch as illustrated
in Figure 22. Here, we attach a spring between the surface normal, an imaginary quill rigidly
fixed to the plate’s surface at a particular point, and the orientation constraint, another quill
emanating from the same point, but having a fixed orientation in space. Given this arrangement,
the surface is “pulled” locally so that its orientation tends to align with that of the constraint.
The appropriate penalty term is the potential energy in the spring. This energy can be expressed
straightforwardly in terms of the first partial derivatives of the quadratic surface patch within

the element, and ultimately in terms of the node displacements.

A more immediately important issue, one that was raised in reference to the examples of
surface reconstruction presented eurlier, is that of dealing with depth discontinusties. In its present

form, the surface approximation algorithm can deal in a meaningfu! way with scenes containing
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Figure 22. P'hysical model of the cffect of an orientation consiraint.

orientation constraint

surtace normal

only a single surface. This is due to the fact thatl it does not incorporate the notion of an occluding
contour; that is to say, it attempts to fit a single surface over the whole sparse 21-D sketch,
interpolating indiscriminately across contours which correspord to places where surfaces in the
scene occlude one other from the viewer. Clearly, this action is inappropriate since the surfaces
on either side of the occluding boundary ought to have no influence on one another. Moreover,
the variational principle for surface approximation was based on the small deflection theory of
the plate?® and, consequently, we expect our surface to behave strangely in the vicinity of a large
change in depth, resulting in, for example, a Gibb’s phenomenon similar to that observed when

approximating discontinuous functions with Fourier series.

How can these depth discontinuities be detected and how do we prevent interpolation
across them? Grimson [1981a, section 9.4] noted the importance of this question and made some
speculations about possible answers to the first of its two parts. The feasibility of his suggestions
remains an open question. Here, we would like to propose another approach that i1s again suggested
by our physical model. In places of sharp changes in depth (or surface orientatinn), the strain
energy in the plate will be locally high. Measuring this energy locally is a simple matter — we use
the energy inner product to compute the strain energy norm a,(v", u")§ over the element domains.

Points of high strain energy are likely candidates for inferring the presence of discontinuitics in

20The large deflection plate bending theory is considerably more complizated and leads to an
Euler-Lagrange cquation in the form of two coupled, nonlinear, fourth-order partial differcnt-al equations
known as von Karmann's equations (see, e.g., [Landau and Lifshitz, 1970] or [Mansfield, 1964))
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depth. We can also exploit our expcctations about the world for added constraint, and assert
that, since most of the retinal image is made up of coherent surfaces, occlusions in depth are
likely to form contours in the imagc and not be sparsely-occurring points. Hence, we look for
contours along the surface of the plate, where the strain energy is high. Having located the
occluding contours, the answer to the second part of the question is simple, in principle. To
prevent interpolation across different surfaces, we “break” the plate along occluding contours.
Mathematically speaking, this is done by removing plate elements along the occluding contour,

thereby introducing free boundaries.

Our multi-level approach to surface reconstruction constitutes a computational paradigm
which has contributed toward a more complete understanding of the generation of the 24-D sketch.
Many details such as the combination of information from the various modules in early vision and
the isolation of depth discontinuities remain to be worked out rigorously within the paradigm. In
addition, a number of exciting issues are raised. For example, how can the hierarchy of surface
representations generated by the algorithm be used to advantage during later computational
stages in which threc-dimensional, object-centered representations are gencrated and objects are
recognized. Similar implications directed to the related field of robotics and manipulation also

suggest themselves. Research addressing some of these issues is currently in progress.
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A. THE FINITE ELEMENT METHOD

When it is impossible to derive an analytical solution to a continuous variational principle,
it is usual to attempt an approximation by defining a discrete problem which is similar to the
continuous one and which leads to a discrete solution. To this end, we will first state an abstract
variational principle which will lead us to an optimal approximation to the exact solution. The
variational principle is called abstract inasmuch as it represents a formulation which is common to
a variety of physical problems, such as the physical model for our surface reconstruction problem.
We will also state theorems which give conditions guaranteeing the existence and uniqueness of
the approximate solution and, in addition, we will discuss the optimal properties of the proposed

approximation.

The abstract variational principle and the associated theorems are stated in a form which is
convenient for the application of the finste element method, a powerful technique for obtaining, by
numerical means, discrete solutions %o variational problems.! The following sections develop the
mathematical machinery which we will require to successfully apply the method. Key mathematical
ideas include a set of Hilbert spaces (the Sobolev spaces) and their norms, a bilinear form (the
energy inner product) which is naturally associated with the specific problem, and certain optimal
properties of the (Ritz) approximation over finite dimensional subspaces. These ideas lead to
a clean and precise theory governing the application of the finite clemert method, cven for
complicated geometries. Comparatively tight theories are unavailable for alternate approximation
techniques which naturally arise from nonvariational problemn statements; e.g., the finite difference
method which can be applied to equivalent formulations in terms of differential operator equations
{(such a: Euler-Lagrange equations). Excellent accounts of the mathematical theory of the finite
element method are {Ciarlet, 1978], [Oden and Reddy, 1976}, and [Strang and Fix, 1973]. An

extensive development from an engineering point of view is presented in [Zienkiewicz, 1977].

A.1. The Sobolev Spaces

Fundamental to finite element analysis are a set of spaces called the Sobolev spaces (see,
e.g., |Agmon, 1965], [Adams, 1975]). They are a generalization of the familiar L; space which

consists of all functions v:Q C R™ +— R (where 1 is 2 bounded domain) whose L, norm over

ll, s = ( /ﬂ lv(x)lzdx)i

is finite. We denote the partial derivatives of v by the notation

o= (&) ()

'The finite element method was conceived by Courant [1943).
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3

where a = (a;,...,a,) is a multi-index of positive integers a,.” The Sobolev norm of order m

over {1 combines the L, norms of all partial derivatives of v up to order m:
, H
[¥lim 2 =( Z /lB"vl dx) ) (1)
n
laj€m
where |a| = a1 + -+ - + a,. The Sobolev space of order m over 1 is then defined by
(@) = {v | {[vllma < oo} (2)
Clearly, ¥9 == L,.
We will also require the associated semi-norm
|Vim.a =( Z /]6"u|2dx)i (3)
™ Q
|aj=m

which includes only the derivatives of order m exactly. It is a semi-norm because it is zero if
v=m,_; € [1"™~1(Q), where II"™ ™! is the space of polynomials of degree m — 1 defined in 1
[Strang and Fix, 1973, pg. 298].

Since the Sobolev norms are sums of L, norms, they have associated inner products and,
thercfore, the Sobolev spaces are [filbert spaces.” Let C9(1) denote the class of functions which
have continuous partial derivatives of all orders up to order ¢g. A fundamental embedding property
of the Scbolev spaces is given by the Sobolev snequality which states that {9 C ¥™ if and only

if m — g > n/2, where n is the dimension of R™.

A.2. An Abstract Variational Principle

Let V be a normed vector space with norm ||-||, and S be a nonempty subset of V. Moreover,

let a(-, -):V X V ~— R be a continuous bilinear form and f:V + R be a continuous linear form.

Definition 1 — abstract (quadratic) variational principle

The problem: find an element u° such that
s S : s
uw €S and f(uT)= if £(v°), (4)
where the functional £:V — R s defined by

£(v) = galv, %) — f(o), (s)

“The derivatives are to be interpreted in the generalized (distributional) sense, but when a derivative
exists in the classical sense, it is equal to the generalized derivative (see, e.g., [Schwarts, 1966]).

3Extensions of the definition of Sobolev spaces and norms have been made to negative and nonintegral
order m (see, e.g., [Agmon, 1965), {Adams, 1875)).
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will be referred to as the abstract variational principle.

Theorem 1 — existence and uniqueness
Assume in addition that
(i) the space V 1is complete,*
(ii) S is a closed convex subset of V,
(iii) the bilinear form a(-, ‘) i3 symmetric,
(iv) af-, ) is V-elliptic,® i.c., there ezists a constant a > 0 such that

YWweV, o av,v) 2 el (6)
then the abstract variational principle has a unigue solutton u$ess

Proof. [Ciarlet, 1978, pg. 3] The bilinear form af(-, -) is an inner product over the space V. Since

it is continuous,'it is bounded,” and because it is also V-elliptic, there cxist constants a and u

such that af|v||? < a(v, v) < pljv||?. Therefore, the norm associated with the inner product is
equivalent® to the given norm |||}, and V becomes a Hilbert space when it is equipped with this
inner product. According to the Reisz representation theorem (see, e.g., [Oden, 1979] or [Yosida,
1971]) there exists an element u € V such that

YvevV, f(v) = a(u, v), (m
and because a(, -} is symmetric,

1

2° °

E(w¥) = %a(vs, v5) — a(y, v°) = —a(v’ —u, v° —u)— %a(u, u).

S S

Therefo e, the minimum of &(v®) and the minimum of a(vS — u, v° — u) as v® ranges over the

set S are achieved by the same element u® € S. In other words, solving the abstract variational
principle is equivalent to finding an element uS € § which is closest to u with respect to the

norm af-, -)¥:

a(u — u®, u—ud)t = uisnefs a(u — v¥, u—vS)h (8)

By the projection theorem, (see, e.g., [Oden, 1979] or [Yosida, 1971]) the solution is the projection
of u onto S with respect to the inner product a(, ), and its existence and uniqueness is assured

by the fact that S is a closed convex subset of V. |

“That is to say, it is a Danach space.

5V-ellipticity means that the bilinear form 1s posstive definite; i.e., a(v, v) = 0 if and only if v =10.
STheorem 1 is a generalization of the familiar theorem for the existence of a unique solution to a
{quadratic) minimization problem in mathematical programming (see e.g. [Luenberger, 1973]).

TA bilinear form is continuous if and only il it is bounded; i.e., there exists a constant u such that
la(u, v)) < w)|ullllv]| [Rektorys, 1980, pg. 111].

*Two norms |]| and |-||' on a linear vector space V are called equivsle:t if the corresponding
metrics are equivalent. This amounts to the existence of two positive constants ¢, and c; such that
arilil < lvil” < ealloll.
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The abstract formulation encompasses linear variational problems which are posed classically

in terms of variational principles involving the minimisation of quadratic functionals &(v) =

a(v, v) — f(v) over an admissible space of functions v € V. Such functionals often represent the

potential energy of a physical system, a{v, v) being the second-degree term which is the sirain

energy in the function v (f(v) is a first-degree term). The associated inner product a(v, w) is the

; energy tnner product which is intrinsic to the particular variational principle, and is defined for

all admissible functions v and w.

It is clear from the above discussion that the admissible space V must be complete and that

£ (v) must be well-defined for all v € V (i.e,, that V must be a space of finite energy). The Sobolev

. spaces fulfill these conditions. Their use as generalized energy spaces is natural in the sense that,
for a given variational principle, the energy inner product is well-defined over a Sobolev space
¥™, where m is the highest order of partial derivative of v which occurs in a(v, v). In general

then, V is the space ¥™ whose natural norm is the Sobolev norm ||-||m.

The role of the subset S is in approximating the exact solution u. Although u is usually
impossible to obtain over the full admissible space V', it may be relatively straightforward to
nptimally approximate it by an element u® € S, especially if S is taken to be a closed subspace

of V. The approximation is optimal in the sense of equation (8). In the ensuing discussion, we

will restrict oursclves to the special case where § is a closed subspace of V. The approximate

solution of the abstract variational principle may then be characterized by the following theorem.

Theorem 2 — variational equation
If S is a closed subspace of V, then u® € S 1s a solution of the abstract variational principle

if and only if it salisfies the variational equation

| W eS, oS, v) = f(v°). ©)

Proof. 1f uS minimizes £ over S, then for any € and v° € §,

E(WS) < W 4 ev®) = %o(us + 0%, u¥ 4 ev®) — f(u® + )
= £(u®) + ¢[a(uS, v5)— f(v5)] + —;-eza(vs, vS).

Therefore,

AL LE Y TiA

0< e[a(us, v¥) — f(vs)] + %c’a(us, v5),

and since this must be true for small ¢, both positive and negative, it follows that a(uS, v5) =
1(v5)° n
°In the general case where S is not a closed subspace, but is only a closed convex subset of V

@' as required by condition (ii) of Theorem 1, the solution u® must satisfy the versational inequehty
- a(u®, »* —u) > F{v® — u¥) [Ciarlet, 1978, pg. 3.

67




2

TERZOPOULOS MULTI-LEVEL SURFACE RECONSTRUCTION

We will now discuss some important properties of the solution of the abstract variational
principle. First, from the proof of the theorem, it is clear that (9) is the well-known condition
for the vanishing of the first variation of € at u¥, in the direction of v®. In particular, if S is the

whole space V, then the solution satisfies

a(u., v) = f(v)l (10)
and the first variation at u vanishes in every direction v. Setting 4 = v, we have a{u, u) = f(u)
and hence

E(u) = %a(u, u) — f(u) = ——%a(u, u);

i.e., ot the minimum, the strain energy is the negative of the potential energy. Now, &(u) < €(u5)

since u is minimal over a wider class of functions. Then,

a(u5, v%) < a(y, u),

and so the strain energy in u® always underestimates the strain energy in u. Moreover, since uS

S S

is the projection of u onto the subspace S, the error ¢® = u — u° is orthogonal to S:

a(e®, vS)=0 wSes.
In particular, a(e®, uS) = 0 or a(u, ¥5) = a(u¥, u5) and
a(e®, %) = a(y, u) — a(u®, u5);
i.e., the energy in the error equals the error in the energy (the Pythagorean theorem holds).
A.3. The Ritz Approximation

The key condition in the hypothesis of Theorem 2 is that the subspace $ be closed. How can
we ensure this? One possibility arises from the fact that finite dimensional subspaces are always
closed. A number of classical methods for solving variational problems, called direct methods, are
based on this.'® One of these, the (Raleigh-) Ritz method [Rits, 1908; Mikhlin, 1964; Rektorys,
1980] is of fundamental importance when a variational principle is involved. In the Ritz method,

we chocse a finite dimensional subspace

N
S=8"={vh|v* = 2 vid:} (11)
1o}
where ¢,,...,¢y are independent basis functions which span S* and v;,...,vn are unknown

real parameters.
1°Direct methods include the metho? of weighted ressduals whose special cases include collocation methods
and the Galerkin method, the method of orthonormal (e.g., Fourier series, and the least squares method, (vee,
e.g., [Finlayson, 1972], [Mikblin, 1964], [Rektorys, 1980}, |Zienkiewics, 1977]).

68




""}m’” E— B i bbbt 5 DM o - B B4 e Vs d P

TERZOPOULOS MULTI-LEVEL SURFACE RECONSTRUCTION

By Theorem 1, the approximate solution to the variational principle is the unique element 1
uh € §" which is the projection of u onto S*. This amounts to choosing parameters v, which

satisfy the discrete variational principle

1 N N N
, £(uh) == ot E(vh) = .. inf 3 3 a(gn tiviy, — Y Ao, (12)

1V ER 2 == =
or, by Theorem 2, the associated variational equation
vvh € Sh, a(u”, v*) = f(v*)

which is, in fact, a linear system of algebraic equations

N

. D aldy, &)u; = f(¢), 1<i<N.

j=1

These equations can be written in the compact matrix form

Au={, (13)

where A € RVY = [a(¢,, ¢,)] and where € R = [f(4,)] and u € RV = [u,], called the discrete
vartational equation. Since the matrix of coefficients A is nonsingular, the discrete solution is
given by u == A~'f, although for the problem at hand A is huge, so it is usually impractical i
to compute A—! directly. In the next section, we describe special types of basis functions which

ultimately lead to practical iteratsive solutions.

A.4. Finite Element Spaces

The Ritz method has given us a discrete solution uh = 2?_;1 u,¢; which is optimal in the
sense that the energy in the error, as measured in the natural energy norm a{u — u*, u — u”)$,

is as small as possible. In the classical Ritz method, the basis functions ¢, are generally chosen

to be fairly complicated functions which have global support over the domain in question {e.g.,
trigonometric functions) [Mikhlin 1964; Rektorys, 1980]. Although this choice may be beneficial
ot for analytic purposes, it renders the method unsuitable for numerical computation. The problem
2 'i is ove;'come by the finite element method which is a systematic procedure for constructing finite 1

‘ dimensional approximating subspaces S", called finite element spaces, which are very convenient :
for numerical computation. In certain forms, the method may be considered to be a special i
instance of the Rits method in which the basis functions are simple functions having local support.
In the ensuing discussion, we will restrict ourselves to a domain {} which is a polygon in R? with
boundary 811 .!! The following are basic characteristics of the construction in its simplest form:

(i) A “triangulation” T" is established over the domain: fl = (g1 E; that is, the domain
o is partitioned into the union of subdomains E € T" called finite elements, such that the E
are closed sets with nonempty interiors and polygonal boundaries. TL: elements are usually

'"The theory has been extended to domains with curved boundaries in any number of dimensions.
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adjacently-placed triangles or rectangles which overlap only at the inter-element boundaries.
Associated with the triangulation is its fundamental length h.}?

(i) The elements are considered to be interconnected at a discrete number of points on the
inter-element boundaries which are called the nodes of the triangulation. The unknown real
parameters of the discrete problem are the nodal variables, the values of the solution (and/or
possibly of its derivatives) at the nodes.

(iii) Associated with the triangulatiou is a space of functions S* defined over {1. Defined within
each element E is a finite dimensional space P* = {v*|g | v* € §"} consisting of functions
which are polynomials (or ratios of polynomials). The polynomials p¥ € F¥ represent a local
approximation of the solution within E, and are uniquely determined by the nodal variables
associated with the element.

(iv) In certain elements, the functions p® may have to satisfy the essential Loundary condilions
of the problem.

While the classical Ritz method is limited to geometrically simple domains f, in the finite
element method this limitation occurs only within the element itself. Consequently, it is possible
to “assemble” complicated configurations from simple element shapes. Several factors contribute
to the success of the finite element method from a computational point of view. Firstly, due to
the fact that in the element interiors the solution is approximated by a low-order polynomial in
z and y, the computations required to compute the discrete functional in (12) or, equivalently,
to compute the entries of matrix A of the discrete variational equation (13) are often simple.
Sccondly, it can be shown that, associated with the local polynomial functions, there exists a
canonical set of basis functions ¢, spanning S" which are also piecewise polynomials and which
have local support. A will therefore be sparse and banded; that is, most of its relatively few
nonzero entries will lie near the main diagonal. Thirdly, when the problem is well-posed in terms
of a variational principle, a(-, -} will be symmetric and S"-elliptic, which guarantees that A will
be nonsingular, symmetric, and positive definie.. In addition to these clear merits, piecewise
polynomials are remarkable in that they are optimal in terms of their approximation properties
and in that these properties are essential for proving convergence of the method [Strang and Fix,
1973, pg. 153].

The convergence properties of the finite element method are an important issue. The object
of the Ritz method is to find optimal values for the nodal variables (which are the parameters of
the discrete solution) by minimizing the discrete functional £{v*). This suggests immediately the
possibility of approximating the exact solution u by a minimizing sequence of discrete solutions to
discrete problems associated with a family of subspaces S* whose fundamental length h has limit
zero. Although the approximation is known by (8) to be optimal in terms of the norm af-, -)}, it
is more convenient to analyze the error in terms of the natural Sobolev norm ||-||,, of V C ¥™.

The following theorem gives a sufficient condition for the convergence of such a sequence.

'2The fundameutal length A of the triangulation T* is the maximum "radius” of the elements. As the
subdivision is made finer, the number of elements increase and h — 0.

70




TERZOPOULOS MULTI-LEVEL SURFACE RECONSTRUCTION

Theorem 3 — Céa's Lemma

Since there ezists a constant C independent upon the subspace S" such that

h : h .
—u"| < C inf |lu—vh,
llu — w7l vggs,llu vl (14)

then a sufficient condition for convergence is that there exists a family S* of subspaces of the

space V such that, for each u € V, limy_o||lu — u*|| = 0; s.e.,
lim inf {lu —v*||=0.
h—0 vreSh

Proof. Equation (14) follows from (8) due to the continuity and V-ellipticity of a(-, -). Moreover,

C = % is a constant independent upon the subspace S*. §

We see then that an estimation of the error reduces to finding the distance between the exact
solution u and the subspace S* — a problem in approzimation theory. The basic hypothesis about

1 the finite element space S* was that the finite-dimensional space PF within each element E is a

space of polynomials. If we assume that the space contains the complete polynomials of degree k
(ie., TI* C P¥), it can be shown in general that the approximation error in the st derivative,

where s # m, is of the form
”u __ uh”‘ — O(hk+l—s + h2(k+1-—-m)) (15)

[Strang and Fix, 1973, pg. 107]. On the other hand, because the approximation minimizes the

strain energy, the order of convergence of the m?® derivative is better. It is order h2(k+1—m)

The convergence properties implied by Céa’s lemma are contingent upon the finite element
spaces S" being subspaces of the admissible space V. In view of this, if the energy inner product
a(v, v) involves partial derivatives of v of order m so that V C ¥™(f1), ensuring convergence
amon=ts to imposing the following two requirements on the local functions p£:

(i) Completencss condition: As the size of any element tends to gzero, the function p¥ must be

such that a constant value of the m'2 jerivative will be attainable in the element subdomain;
i.e. we must have k > m so that PE C ¥™(E), VE € Th.

(ii) Conformity condition: All derivatives of pF of order less than m must be continuous across
inter-element boundaries; that is, S* C c™—1(f1).

The two requirerhents are necessary and sufficient for S* C ¥™(N) when the pF are polynomials .
(or ratios of polynomials). Another way of stating the completeness condition is that the local

polynomials must be able to reproduce a state of constant strain — any solution which is a

polynomial of degree m. When the local polynomials satisfy the conformity condition, the elements

are called conforming finite elements, and their use leads what are referred to as conforming finite

element methods.
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A.5. Nonconforming Elements

In the above discussion, we assumed that conforming finite element mecthods approximate

the solution u of £(u) = inf,es £(v) by the solution u* of £(u") = inf,uesn E(v*) where S*

is a subspace of S. This is a global condition on the approximation which is often violated for

: reasons of computational convenience. For instance, it may be violated by dropping the element

conformity condition.!?® Elements which do so are called nonconforming elements. They are often

used in practice for higher-order problems because conforming elements for such problems are

unnecessarily complicated or must have a large number of degrees of freedom in order to satisfy

the inter-element conformity conditions.

If nonconforming elements are used, it is clearly impossible to evaluate the true energy

functional £ (v"),' due to the singularities in the m'R derivatives of v* which occur at the element

boundaries. To avoid this problem, we can simply ignore the discontinuities between elements by

computing the strain energies within each element and then summing the individual contributions;

that is, for the original energy inner product a(:, -), we substitute the approzimate energy inner

product a,(-, -) defined by the bilinear form

an(s, ) = Z a(, Mg (16)

EeT»

where the notation |y means a restriction to the element domain. The approzimate varsational

principle is then the problem of finding a u* € S* which minimises the functional

En(v™) = %ah(v", vh) — F(v"), (17)

and the necessary condition for the vanishing of the first variation becomes

voh € 8%, an(u*, v*) = f(v*). 118)

. Following in the spirit of the conforming case, we must determine sufficient conditions for

i the existence and uniqueness of the solution u” to the approximate variational principle, as well

as under what conditions this approximate solution converges to the exact solution u as h — 0.

following theorem.

{

‘i The conditions are natural extensions of Theorem 1 and Céa’s lemma, and are given in the
! ¢
1
1

Theorem 4 — existence and uniqueness (nonconforming case)
if
(i) there ezists a mapping ||-[|n: S* ++ R which is a norm over S*,
(ii) an(-, -) is bounded and S*-clliptic, sn that there ezists a constant a, > 0 such that

13This violation is an example of a so called variationsl crime [Strang and Fix, 1973, Chapter 4.
Besides violation of the element conformity condition, variational crimes also in~'ude inexact evaluation
of the functional £(v") (i.e., of the quadratic form a(u”, v") and linear form f(v*)) ruch as by numerical
integration, as well as various techniques for the approximation of essential boundary conditions.
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vt € Sh: ah(”hv "h) 2> ah“"h“?u
then the approzsmate variational principle has a unigue solution uh € St
Prool. Refer to the discussion in [Ciarlet, 1978, Chapter 4]. 1

On the other hand, to obtain convergence, we impose a stronger condition, unsform §  llipticity,

which requires that there exist a constant & > 0, independent of h, such that
vsh, wuh e 8%, an(v®, v*) > allvhi3. (19)
Convergence is then guaranteed by the following theorem.

Theorem 5 — Strang's lemma
Given o family of discrete problems for which the associated approzimate energy inner

products are uniformly S*-elliptic, then there exists a constant C, independent of S*, such that

[SSEPTAN SIA S
nu—u'*nhsC(u.igngu—v"nnL wp_Loalte w) Sl "). (20)

sk llwl(n

Proof. See [Ciarlet, 1978, pg. 210]. B

Strang’s lemma is a generalization of Céa’s lemma for conforming elements — in addition
to the usual approximation error term, we have the (inf) term which measures the consistency
error of the nonconforming space. Since the difference ax(u, w*) — f(w") is zero for all w* € S*
when S" C V, the consistency error for conforming spaces is identically zero and Strang’s lemma
reduces to Céa's lemma. However, for the nonconforming case, convergence is obtained if the

consistency condition,

hm sup lah(ur wh) - f(wh)l —

0, Vvotegh 21
e, o (@)

is satisfied.

The consistency condition was first recognized empirically and was stated in the form of a
simple test known as the patch test. Subsequently, Strang proved mathematically that the patch
test was indeed a test for consistency and, by essentially making the above arguments, that
nonconforming elements which pass it will yield convergence (see [Strang and Fix, 1973, Chapter

4]). The test remains a convenient one to apply.

Theorem 6§ — the patch test

Suppose that the energy inner product an(u, v) contasns derivatives of order at most m and
the nonconforming space S™ contains all polynomials 7,, of degree at most m. If the nonconforming
finite element method recovers all solutions which are polynomials of degree at most m, then the

patch test is passed, and limy_g||lu — ut||n = 0.
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- et 30+

In other words, suppose that we put an arbitrary patch of nonconforming elements associated
with the nonconforming space S* in a state of constant strain; that is, we impose v" = r,, € [I™
on the displacements at nodes around the patch boundary. Because the completeness condition
of the previous section is still binding on nonconforming elements, this polynomial is both an
element of S* and an element of V, hence its consistency error is sero. The conforming (Ritz)
solution to (12) or (13) and the nonconforming, discrete solution of the approximate variational
principle ought then to be identical and equal to x,,. The test is to determine whether this is
indeed the case. *
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B. ITERATIVE SOLUTION OF LARGE LINEAR SYSTEMS

The approximation of a variationa) principle by direct methods such as the finite clement
method (or the approximation of a boundary value problem by finite differences) gives rise to a
system of simultaneous algebraic equations. For quadratic functionals (or linear boundary value
problems), the system will be linear. In this chapter, we consider the problem of solving, by

iterative means, systems of linear equations of the form

N
Yasu,=f, 1<i<N, (1)

j=1
where the coefficients a,; and the values f; are known. The system may also be written as the

matrix equation
Au =T, (2)

where A € ®VV = [a,,] is a nonsingular matrix and where f € R = [f,] is a column vector. We
wish to solve the system for the column vector u € ®Y = [u,] = A™'f. In applying the finite
clement method to our visual surface reconstruction problem, we will obtain large sparse matrices
A. ln this appendix we will be concerned with numerical methods which are capable of solving

such systems where N is in the range of, say, 10 - 10%, or larger.

An iterative method for solving equations (2) computes a sequence of approximations
uD,u®, ..., to the exact solution u. A new, and hopefully better, approximation is computed
at each iteration, but, in general, the exact solution cannot be obtained in a finite number of
iterations. If, regardless of the initial approximation u(®),'* the approzimation error (i.e., the
difference between the exact solution and the approximations, measured in some appropriate norm)
tends to zero as the number of iterations increases, the iterative method is said to be convergent,
and the rate at which the approximation error tends to zero is called its rate of convergence. In
order that an iterative method be of practical use, it is important that it be convergent, and that
it exhibit a sufficiently large rate of convergence to an approximation of prespecified accuracy.
In this appendix, we review a number of the most common iterative methods, and examine their
convergence properties and their rates of convergence. References for this material are [Forsythe
and Wasow, 1960], (Smith, 1977], [Varga, 1963] and [Young, 1971; Young and Gregory, 1972,
1973].

B.1. Basic Relaxation Methods

Let us assume that A has nonzero diagonal elements. It will be convenieant to express A as

the sum
A=D-L-T1,

14The trivial initial approximation u!® = 0 is usually chosen.
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where D € ®VN is diagonal, L € ®VN is strictly lower triangular, and U € RV is strictly upper

triangular. Clearly the equations in (1) can be rewritten in the [ollowing form:

Qi = — E a;u, + fi, 1<i1<N.
1<jEN
I

Next, we will define three basic iterative methods for solving (2}, popularly known as relazation

methods in the context of the numerical solution of partial differential equations.

Jacobi Relaxation

The Jacobi method (or the method of simultaneous displacements) is defined by

stV =— 3 au’+f, 1<i<N,

15j;£5|_~

which can be written in matrix form as
Dul*+" — (L 4 U)u® 41,
thus giving us the iterative scheme
ultt) = p—YL + Uu® - D't (3)

The matrix

6y, =D"(L+U)
is called the Jacobsi si..ation matriz associated with matrix A.

Clearly, the Jacobi method is a parallel method because the elements of thc new approximation
u*+1) may be computed simultaneously and in parallel by a network of processors whose inputs
are elements of the old approximation ul*). As such, it requires the storage of both the old and

the new approximations.
Gauss-Seidel Relaxation

Convergence of the Jacobi method is usually very slow. In a closely related method, the
so called Gauss-Setdel method (or the method of smmediate displacements), the elements of the
new approximatijon are used in subsequent computations immediately after they become available.
This increases the rate of convergence somewhat, but typically less than an order of magnitude.

The equations are written as

i—1 N
aii“:"k+l) =~ Z aiju§k+l) - E Gc‘j“}k) + /i 1<¢<N,
Jml gi1

which, in matrix form, becomes

Dutt+1) = Lul*+1) 4 gul®) 4o, (4)
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from which we obtain the iterative scheme defined by
w1 = (D — L)~ 'Uu®) - (D — L)' (5)
The Gauss-Seidel iteration matriz associated with matrix A is therefore given by
Ggs =(D—L)"'U.

In the Gauss-Seide! method, we no longer need to store simultaneously the old and new
a‘pproximations. As they are computed, the new elements can simply displace the old ones.
Moreover, since the new values are exploited immediately in subsequent computations we can
intuitively expect a higher rate of convergence compared with the Jacobi method. On the other
hand, it can easily be seen that the Gauss-Scidel method is inherently a sequential method which

renders it unsuitable for implementation as a parallel network.

.

The Successive Overretaxation (SOR) Method

The convergence of the Gauss-Scidel method may be accelerated by a simple modificatioa.
Let us define the dynamic residual vector'> at the k*® iteration of the Gauss-Seidel relaxation
method as

£8) (k1) _ (k)
=D (Lu*+V) 4 Uu® 4 1) —ul®
(see (4)). Then, it is evident that the Gauss-Seidel scheme can be written in the form

wlk+1) — k) 4 ple),

If the elements of all successive residual vectors are one-signed (as they usually are when
approximating elliptic problems), then it is reasonable to anticipate an acceleration in the
convergence of the Gauss-Seidel scheme if the residual vector is scaled by a fixed real number
w > 1 before it is added to u{*) in each Gauss-Seidel iteration. w is called the relazation parameter.
This idea leads to one of the most successful iterative methods for solving systems of linear
equations currently available, the successsve overrelazation method. The method may be defined
by

a1 — k) ek
= ul® 4+ WD~ (Lu-+1) 4 Uu® 4 1) — u(")],

wﬁich we can manipulate into the form
ulk+1) = (1— wD™'L)'[(1 — wll + wD~'UJu®) 4 (I — wD~'L)'wD 1. (6)
The successive overrelazation steration matriz is therefore given by

G, =({I—wD™'L)"!{(1 —w)I+wD™U).

15The residual vector is also called the correction or displacemnent vector. Note that the residus! of an
equation is the amount by which the equation fails to be satisfied.
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Three cases arise:
(i) if w > 1 the scheme is called overrelaxation,'®
(ii) if w = 1 we obtain the Gauss-Seidel method, and
(i) if 0 < w < 1 the scheme is termed underrelaxation.

Conditions for Convergence

The Jacobi, Gauss-Seidel, and successive overrelaxation methods are particular instances of

the general stationary tterative method
ulk+!) — Gutd) ¢, M

where the iteration matrix G is taken to be G, G;s, and G, respectively, and ¢ is a known
column vector.!” By subtracting u == Gu + ¢ from (7), we can obtain an expression for the errors
et¥) = ul%) — u of successive approximations,

elk+1) . gelk)
= G¥t+1el0), (8)

The sequence of approximations converges to the solution u if limy_.. el*) = 0, which will
clearly be the case if and only if limi—.oo G*¥ = 0, since u!® (and hence e!®) is arbitrary. Let
G have eigenvalues X1, Xq,...,An, and assume that the corresponding eigenvectors vy,vsy,...,Vxn
are linearly independent. Then the initial error vector can be expressed uriquely as the linear

combination

N
e(o) == Z CiVy.

i=1
But, by (8),

e®) — GFel®

N
== Z G(GkV.'

=1

N
= E c,-)\"v..

1=

It follows that in the limit, ¢{*) will be zero for an arbitrary initial approximation if and only if

A < i, for 1 < 1 < N. Thus, we have the following theorem.

‘It should be noted that there exist classes of matrices (which arise from many first and second
order partial differential equations) for which the optimal value of w, yielding the largest rate of
convergence, may be detcrmined apalytically (see e.g. [Young, 1972), [Young and Gregory, 1973]). Often,
the convergence may be adequately accelerated by not necessarily optimal values of w chosen empirically.
Of course, it is possible to vary w from iteration to iteration or from one equation to the next. A
sumber of these modified methods have been studied in the literature (see e.g. [Varga, 1962] or [Young,
1971; Young and Gregory, 1972, 1973]).

""The method is obtained by writing the original system Au =T as u == Gu + ¢, and is referred to as
being stationary because G is fixed for all iterations.
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Theorem 1 — nceessary and sufficient condition for convergence of the stationary iterative method

The stationary iterative method {7) 15 convergent 1f and only iof
N
p(G) = max ) (G)] < 1,

where p(G) is called the spectral radius of G.'®

Theorem 1 is mainly of theoretical value because, in practice, it is difficult to determine
the eigenvalucs of G. Fortunately, we have a useful corollary giving sufficient conditions for
convergence. The corollary results from the observation that for some matrix norm ||G|| which is

tlg

consistent!® with a vector norm [|v,}},

e®™N) < NG* 1 1e!)] < 1|GI*|1e®I. (9)
Hence we obtain the following corollary to Theorem 1.

Corollary 1 — sufficient condition for convergence of the stationary iterative method

If |Gl < 1, then the stationary sterative method (7) ts convergent.?®

Suppose that the stationary iterative method is convergent. It can be shown (see [Varga, 1962] or
[Young, 1971]) that

. 1/k
Jim 116Xz, = o(G).
—00
Hence, from (9) we have that, for large k,

eI, == o(G)*[|e )],

Thus, in a certain sense, p(G) is a measure of the rate of convergence of the iterative method and

therefore, like convergence itself, depends on the eigenvalues of G.

We illustrate an application of Corollary 1 in obtaining a simple but important sufficient
condition for the convergence of Jacobi relaxation. The Jacobi iteration matrix G; consists of
the elements

Gy

o= —, ‘ .
giy on ;é 23

gii = 0.

Therefore the L, norm of G is given by

N .
HG oo = max 3 lay!
=1 SEn laal
Tk

181t can be shown (see e.g. [Varga, 1962]) that the theorem holds without the independence assumption
on the eigenvectors.

1%f a matrix norm and a vector norm satisfy the relation [|[Au|| < ||A||||u|| for any A and u, then the
two norms are said to be consistent |Dahiquist and Bjorek, 1974, pg. 175].

2The condition is not a necessary one because we can have the case that ||G|| > 1 when p(G) < 1.
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Clearly, if lau| > 3 1<i<n |aijl, |Gslle < 1, and Jacobi relaxation will converge by corollary
yohi
1. A much more genera.l result may be obtained. We begin by defining two immportant properties

that A may possess.

Definition 1 — (weakly) diagonally dominant matrix
A matriz A of order N 1is said to be diagonally dominant if
lasl > Y laiil, 1<i<N.
1SN
F5Ee
The matriz is said to be weakly diagonally dominant if the > relation in the above inequality can

be replaced by > in some, but not all, of the equations.

Definition 2 — irreducible matrix
A matriz A of order N 1is irreducible if and only if N =1, or if N > 1 and for any
and 3 such that 1 < 4,5 < N and i 5%£ 5 either a,;, = 0, or there exist 4y,12,...,4; such that

21
[N TP T § 75 0.

It can be shown that if A is irreducible and has weak diagonal dominance, then it is nonsingular,
and if in addition it is symmetric and has non-negative diagonal elements, then it is positive

definite. The general theorem is given next (For a proof sce [Varga, 1962, pg. 73]).

Theoretn 2 — sufficient conditions fur convergence of the Jacobi and Gauss-Seidel relaxation
Let A be either a diagonally dominant or an irreducible and weakly diagonally dominant
matriz. Then, both the associated Jacobt and Gauss-Seidel relazation methods of (§) and (5) are

convergen?.

Next, we turn our attention to the successive overrclaxation method. Since the inverse of a
triangular matrix is also a triangular matrix, and its determinant is equal to the product of its

diagonal elements, we have
det(G,, ) = det[(I — wD™'L)"]det[(1 — w)l 4- wD U] = (1 — w)".

Since det(G,) = []Y_, \,, it follows that

1==1
N

max [\, > |1 —w|,
[E=3Y

which, by theorem 1, leads to the following.

Theuwres. 3 coavergence of the SOR method

p(G.) > |lw—1|

<+-4u rbbe matns was otroduced by Frobenius for matrices which (informally speaking)
. e; .+ wne whose solut.ons cannot be reduced to the sciition of two systems of
“aine rreducihie ma‘rices when discretising boundary value problems over
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therefore the successive overrelazation method (6) can converge only sf 0 < w < 2.

A set of necessary and suflicient conditions for convergence for the successive overrelaxation

method are stated in the following theorem.

Theorem 4 — convergence of SOR method for symmetrie, positive definite A
If A is real, symmetric matriz with posttwe diagonal elements, then the successive overrelazation

method (5) 18 convergent 3f and only 1/ 0 < w < 2 and A s positive definste.

The same conditions for convergence hold for the Gauss-Seidel method :ince, by definition,

it is a special case of successive overrelaxation.

Corollary 2 — convergence of Gauss-Scidel relaxation for symmetric, positive definite A
If A ts a symmetric matriz with posstive diagonal elements, then the Gavss-Sesdel method s

convergent if and only tf A ts positive definste.

It is important to note that the same statement cannot be made about the Jacobi method.

B.2. Basic Gradient Methods

In this section we investigate a class of iterative methods which are naturally associated
with optimization theory. These are the so called gradient methods which, in their full generality,
are iterative techniques for minimizing nonlinear functionals. They may also be thought of as
methods for solving systems of linear equations for the special case where the functional to be

minimized is a quadratic form.

Assume that A € RVN i3 symmetric. Now suppose that we attempt to solve the following

unconstrained minimization problem involving the quadratic form &(v)
E(u) = inf £(v)= ~(v, Av)—(f, V)
= VERN bt 2 ) ’ r
where (-, ): RN x ®" ++ R denotes the familiar Euclidean inner product. From the well-known
theorem of optimization theory (see, e.g. [Luenberger, 1973]), the gradient vector of &(u)
VEé(u) = Au —T,

vanishes at a minimum u and, moreover, the minimum exists and is unique if the Hesstan matnz

[ean ] =+

is positive definite.

Thus, for symmetric, positive definite A, solving the minimisation problem is equivalent
to solving the system of linear equations Au = { and, consequently, relaxation methods can be
thought of as being methods for descending to the minimum u of a quadratic functional.

81




A Ea die b ot b

TERZOPOULOS MULTI-LEVEL SURFACE RECONSTRUCTION

Gradient Descent

Consider the iterative method u{*+1!) — ul%) 1 alk)d(k), where at each iteration, we take
a step in the direction of the vector d*). To minimize £(u) quickly, we should move in the
direction of steepest descent, which is given by the negative gradient; that is, d'¥) = —V €(u(")) =
f— Aul®) = ¢l%) where r¥) is the familiar residual vector. Thus we obtain the nonstationary

iterative method defined by

ulk+1) — k)  g(K)glk), (10)

It seems reasonable to choose the step size at each iteration a!*) so as to minimize & (ul¥)4- o(*)r(¥)),

The appropriate value can easily be shown to be

(k) plk)
k) — _.(L." ).
a'™) = (r(k), Ar“‘))' (11)

On the other hand, if we fix a(*) = a for all iterations, then (10) becomes
ult+ = (I — aA®) 4 of, (12)
which can be identified as a stationary iterative method with iteration matrix G = I — cA.

The Conjugate Gradient Method

Hestenes and Stiefel {1952] introduced the conjugate gradient method, a modification of the
method of gradient descent. The method is based on determining vectors d!®),d*),... dl"—1)
which are pairwise conjugate in the sense that (d('),Ad")) == 0 for 1 5% j. The ease in applying
the method derives from the fact that these vectors may also be determined iteratively. With the
residual vector at the kP iteration given by r'*) = f — Au'*) and with d®) = (%), the algorithm

for determining the d!*) and u!*! is as follows.

wlk+1) oo (k) %d(“, 0< k< N-—1

di*) = pl6) _ ‘_"L(%%:’deﬂ), 1<k<N-—1

("-—l))

Conjugiacy of the vectors can be verified along with the fact that (r"’,r(’)) = 0 for ¢+ % j. This
implies that r'*} = 0 for some & < N. Therefore, in the absence of roundofl errors, the method
converges in at most NV iterations. Of course, this property is of no real value to us because we
must deal with cases where N is very large. Nevertheless, for N large, typically u'*) == u for
k < N and the algorithm may be used in the iterative spirit. The conjugate gradient method is
certainly the most expensive of the algorithms discussed both in terms of space (since the vectors
u®), d) p) and Ad'Y) must be stored) and in terms of the number of operations to complete
one iteration. While it is true that, for model problems, the number of iterations required to
reduce the error by a specified amount is usually considerably less than for the other methods, the
conjugale gradienl method seems to exceed at least the successive overrelaxation method (with

optimal w) in total number of operations requited [see e.g. Young and Gregory, 1973, pg. 1071].
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Convergence and Comparisons to Relaxation

It is easy to show [Luenberger, 1973] that gradient descent (10) with (11) is convergent for
a positive definite matrix A to the solution u = A—'f where the quadratic form ¢ is minimised.
On the other hand, we must be a little more careful with the fixed-a descent algorithm (12). The
eigenvalues )\, of its iteration matrix G are related to the eigenvalues A/ of A, all of which are
positive (since A is positive definite), by A\, = 1 — a)\!. Therefore, according to theorem 1, we

obtain the following.

Theorem 5 — necessary and sufficient condition for convergence

For a positive definite matriz A, the fited-a method of equation (12) is convergent if and
only if 0 < a < ;(%i'

Of course, convergence is quickest for that a which minimizes p(G), which often cannot be

determined in practice.

By comparing (12) with the Jacobi method (3), we can convince ourselves that the two
methods become identical when A is positive definite, has identical elements on its main diagonal
(i.e. D = al), and a = 1/a. Moreover, Forsythe and Wasow (1960, pg. 239] (see also [Milne,
1970]) show that the Gauss-Seidel and successive overrelaxation methods are also subject to
interpretations as descent methods. In these cases, however, we have not one, but a sct of direction
vectors which turn out to be x,, the coordinate unit vectors of ®”. During each iteration, we
take a sequence of steps of different sizes in each of these directions. The step sizes are such that
(™) 4 afk)x.) is minimized, and are given by af") = rﬁk’/a.. for the Gauss-Seidel method and

(k) th

ask) = wrf")/a... for the successive overrelaxation method, where r,”’' is the :*" element of the

residual vector at iteration k.

The computation of an optimal a*) at each iteration according to (11) requires that ri*)
be stored and that Art*) be evaluated. This doubles the amount of work required per iteration
in comparison with a fixed-a algorithm or Jacobi relaxation. This raises the question: which is
better in the long run; N iterations of gradient descent, or 2N iterations of the fixed-a or Jacobi
relaxation? To quantitatively decide the issue, a convergence analysis ought to be attempted. This
is problem-dependent and is generally difficult to do, so we will simply note that Forsythe and
Wasow {1960, pg. 225| do not recommend the optimisation of a and, moreover, refer to a result by
Stiefel [1955] indicating that it is, at best, a short-sighted strategy. Interestingly enough, Grimson
[1981a] used the optimal-a algorithm in his implementation of the surface interpolation algorithm
(with a minor modification to make certain that the fixed constraints are never modified, thus,
in effect, treating them as essential boundary conditions). Considering the statements of Forsythe
and Wasow, it is not surprising that extremely slow convergence was observed in spite of the

extra work expended at each iteration to compute the optimal a.
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C. LOCAL FOURIER ANALYSIS OF RELAXATION

In this appendix, we present the details of a local Fourier analysis of the Gauss-Seidel
relaxation and obtain the smoothing factor for this method. The analysis involves studying
separately the convergence of the high-frequency Fourier components. Since these components
have short coupling ranges, we can perform the analysis in the interior of {1, ignoring the effects

of the boundary and the constraints.

According to equation (4.9), the minimising displacement u, ; at an interior node (s,7) is
related to the other nodes by
20u;,; — 8(wi—1,; + Wigr,; + Uy U y41)

+ 201 ,—1 F igr,—1 F e Wy 1) (1)
+ 1(“|—2.j + Ui 2,5 + Uy, j—2 + ui,;+2) =0

(for convenience, we have suppressed the superscripts h). According to the discussion in Appendix

B, at iteration k of the Gauss-Seidel relaxation method, v( ) is replaced by a new value V(k+])

such that

k+1 k41 k k41 k
20v (,J ) 8( 5—1.1) +vs-+!l.1 +vf J"l) + v(.,v)-{-!)
k41 (k+1 k k
+2 E—-l,])—-l + V|+1.;)-1 + VS—)-I.J-H + Vux.,-m) (2)

k41 k k41 Kk
(R ol ol o) =
The errors of the approximation at iteration k and iteration k 4+ 1 are given by

elk+1) e+

(k) (k) =u,, —
' -J

e, =U,;, —V

N and

1.3 )
respectively. Subtracting (2) form (1), we obtain
k41 k41 k k+1 k
20e{’;+" s(eﬁ_j,‘} e, + (.:—-1)“*“(.:)4-1)
k41 k41 k k
+ 2(35—1,1)»—1 + e!-:l-,}—; + ef_)u g+t °$42m+1) (3)
k+1 (k k+1 k
+ ‘( s e, el + °$.;)+2) =0,
Suppose that the error consists of only a single spatial Fourier component @ = [w), w,]. Then the
errors at node (1, ) before and after the k*2 iteration are given by

es’:]) — (k)ez(w, twas) and U"J'f"!) A‘(;"“)el(wxl""h'a” (4)

respectively, where . = /—1.

Substituting (4) into (3), dividing through by e“:'+~2J) and collecting terms pertaining to

the same itcration, we rhtain
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A,‘:'(«—S(e"‘“ + e‘“”) + 2(e‘(“"+“") + et{—w +u:)) + (emu. + ezm.))
+ A,‘z,"+‘)(20 _ 8(6-“‘“ + e-—tw;) + 2(e¢(w; —w3) + cz(-—u,—wa)) + (e—2w, + e—mw;)) = 0.

The amplification of the & component is then given by

{k+1)

pas(@) = —ATJ-

8(clw| + e“"’) — 2(¢u(w, +w3) + ec(-—u,-{-w:)) —_ (emu, + e!m.)
20 — 8(:-4«1; + C—"‘") + 2(:4(:41-«11) + et(—w,—w:)) + (e—ﬁcw, + 6_2“"’)

Let |®| = max{jw|, |w2]). The Gauss-Seidel smoothing factor is defined as the smallest
amplification attained for a high-frequency component of the error; that is, a component which

is visible on the fine grid, but is aliased on the coarse grid:

= max @),
bgs J*SMS’J‘GS( )

Evaluating this expression numerically, we obtain fgg == 0.8 (for w; = 1.6 and wy; = 0.3).
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